Lecture D31 : Linear Harmonic Oscillator
Spring-Mass System
Spring Force F = ?kx, k > 0
Newton’s Second Law
m¨x+kx = 0
(Define) Natural frequency (and period)
ωn =
radicalBigg
k
m
parenleftbigg
τ = 2piω
n
parenrightbigg
Equation of a linear harmonic oscillator
¨x+ω2nx = 0
1
Solution
General solution
x(t) = Acosωnt+Bsinωnt
or,
x(t) = C sin(ωnt+φ)
Initial conditions
x(0) = x0 ˙x(0) = ˙x0
Solution,
x(t) = x0cosωnt+ ˙x0ω
n
sinωnt
or,
x(t) =
radicalBig
x20 +(˙x0/ωn)2sin(ωnt+tan?1(x0ωn˙x
0
))
2
Graphical Representation
Displacement, Velocity and Acceleration
3
Energy Conservation
Equilibrium
Position
No dissipation
T +V = constant
Potential Energy
V = 12k(x+δst)2 ? 12kδ2st ?mgx
At Equilibrium ?kδst +mg = 0,
V = 12kx2
4
Energy Conservation (cont’d)
Kinetic Energy
1
2m˙x
2
Conservation of energy
d
dt(T +V) = m˙x¨x+kx˙x = 0
Governing equation
m¨x+kx = 0
Above represents a very general way of de-
riving equations of motion (Lagrangian Me-
chanics)
5
Energy Conservation (cont’d)
If V = 0 at the equilibrium position,
V = 0 T = Tmax for x = 0
V = Vmax T = 0 for x = xmax
→ Tmax = Vmax
6
Examples
? Spring-mass systems
? Rotating machinery
? Pendulums (small amplitude)
? Oscillating bodies (small amplitude)
? Aircraft motion (Phugoid)
? Waves (String, Surface, Volume, etc.)
? Circuits
? ...
7
The Phugoid
Idealized situation :
? Small perturbations (h′,v′) about steady
level flight (h0, v0)
h = h0 +h′ v = v0 +v′
? L = W (≡ mg) for v = v0, but L ~ v2,
L
mg =
v2
v20 ≈
v20
v20 (1+2
v′
v0 +...)
8
The Phugoid (cont’d)
? Vertical momentum equation
m¨h = L?mg
¨h = g(1+2v′
v0 ?1)
? Energy conservation T = D
mgh0 + 12mv20 = mgh+ 12mv2
(to first order) → gh′ +v0v′ = 0
? Equations of motion
¨h′ +2 g2
v20 h
′ = 0
¨v′ +2 g
2
v20 v
′ = 0
9
The Phugoid (cont’d)
h′ and v′ satisfy a Harmonic Oscillator Equa-
tion
Natural frequency and Period
ωn =
√2g
v0 τ =
√2piv0
g
Light aircraft v0 ~ 150ft/s → τ ~ 20s
Solution
h′ = Asin
parenleftBigg√2g
v0 t
parenrightBigg
v′ = ? gv
0
Asin
parenleftBigg√2g
v0 t
parenrightBigg
10
The Phugoid (cont’d)
Integrate v′ equation
x′ = A√2cos
parenleftBigg√2g
v0 t
parenrightBigg
x = x0 +x′
11