DJAFB3 ABA9A7ATB1A5DHA7AT
B0A0AKAMAPAZ
1. B0B2AVAXAAA8
(1)A0BRBYBL
A0CZAADBADBC Y CCADBC X A2BPDACQB6CMB4
Y = β
0
+ β
1
X + e,
CCCY β
0
+ β
1
X AFD8 Y AAX BKADD2BXBABOADD2BKAMC4A5 eD9AADBB1AUA4e ~ N(0,σ
2
). AY
CTA0f(X)=β
0
+β
1
X ASC0CFBABOD5COCTA0A1β
0
,β
1
ASD5COB4A0A1AY X ASD5COD8ADBCA2D9
D5COC3D7A3A5AY Y ASD5COC3ADBCA2D9BEC6ADBCA3A5
CT(x
1
,y
1
),(x
2
,y
2
),...(x
n
,y
n
)D9(X,Y )BKC0DBCNARCTA5CLC0CFBABOD5COBYBLAWAFD8AS
y
i
= β
0
+ β
1
x
i
+ e
i
i =1,2,...n,
CCCY E(e
i
)=0,i=1,2,...n.
(2)AKBVD5COC2B2
C9DCBIBYB1BZCIB5ATCRAPA0 β
0
, β
1
BKCKDG
?
β
0
,
?
β
1
. BK
Q(β
0
,β
1
)=
n
summationdisplay
i=1
(y
i
? β
0
? β
1
x
i
)
2
,
CL β
0
, β
1
BKDCBIBYB1CKDGD9CUD6
Q(
?
β
0
,
?
β
1
)=min
β
0
,β
1
Q(β
0
,β
1
)
B0B7BK
?
β
0
,
?
β
1
. AKDGA9AWBJ
?
β
0
= y ?
?
β
1
ˉx,
?
β
1
=
n
summationtext
i=1
(x
i
? ˉx)(y
i
? ˉy)
n
summationtext
i=1
(x
i
? ˉx)
2
=
S
xy
S
xx
,
CCCY
ˉx =
1
n
n
summationtext
i=1
x
i
, ˉy =
1
n
n
summationtext
i=1
y
i
,
S
xx
=
n
summationtext
i=1
(x
i
? ˉx)
2
,S
xy
=
n
summationtext
i=1
(x
i
? ˉx)(y
i
? ˉy).
1
2
C9B8AWBJD5COC2B2AS
?
Y =
?
β
0
+
?
β
1
X,A2D9AYAKBVD5COC2B2A3A5AKAWCK
?σ
2
=
n
summationtext
i=1
(y
i
?
?
β
0
?
?
β
1
x
i
)
2
n ?2
ASAPA0 σ
2
BKCKDGBCA4A2BYAYAS σ
2
BKDCBIBYB1CKDGA3A5AWC1CQBV ?σ
2
D9 σ
2
BKAZC8CKDGA4DE
E?σ
2
= σ
2
.
(3)D5COC2B2BKB7D2BOA3BV
H
0
: β
1
=0 ←→ H
1
: β
1
negationslash=0.
AKAWAOC8CUCZC2BZA6
(i) tA3BVBZ
BH H
0
B0B7D3AODGBC
T =
?
β
1
√
S
xx
?σ
~ t
n?2
,
BVCBCGBQBKB7D2BOA2CA α,A3BVBKAOARCDAS
W =
braceleftbigg
|T|≥t
n?2
parenleftbigg
α
2
parenrightbiggbracerightbigg
.
(ii) F A3BVBZ
BH H
0
B0B7D3AODGBC
F =
?
β
2
1
S
xx
?σ
2
~ F
1,n?2
,
BVCBCGBQBKB7D2BOA2CA α,A3BVBKAOARCDAS
W = {F ≥ F
1,n?2
(α)}.
(iii) BBCMB4A0A3BVBZ
DH
R =
S
xy
radicalbig
S
xx
S
yy
,
AYRASBWABBBCMB4A0A4BVCBCGBQBKB7D2BOA2CA αASBBCMB4A0BGAFCTAFAWBJ r
n?2
(α),CLA3
BVBKAOARCDAS
W = {|R| >r
n?2
(α)}.
BHAOARH
0
D3A4CNASBABOD5COC2B2D9B7D2BKA5
3
(4)CEAR
BVCB X BKCGBQCT x
0
, y
0
BKCWBKBTAS 1? αBKCEARCJA2AS (?y
0
? l, ?y
0
+ l),CCCY
l = t
n?2
parenleftbigg
α
2
parenrightbigg
?σ
radicalBigg
1+
1
n
+
(ˉx ?x
0
)
2
S
xx
(9.1).
DE
P{?y
0
? l<y
0
< ?y
0
+ l} =1? α.
B5A6CJD5DIAWAFCYA4BHBWABCPBC n CZBED3A4BVCBCJ ˉx C8AIBK x
0
, AWC1BJBIA4D2BKCEARCJ
A2A4B8D3 (9.1) D7CYBKCHD7AIA6BLCB 1. CG t
n?2
(
α
2
) ≈ Z
α/2
,CBD9 y
0
BKCWBKBTAS 1? α BKCE
ARCJA2AIA6BNBLCB
(?y
0
? ?σZ
α/2
, ?y
0
+?σZ
α/2
). (9.2)
(5)AYCX
AYCXD9CEARBKC0AWAFA4DEBXCICNATCT y CJC0C0CJA2(y
1
,y
2
)C2CKCTD3A4AWC6A8 xAYCX
CJD4BQC1ARC2A1C9 (9.2)D7A4BK
?
?
?
y
1
=?y ? ?σZ
α/2
=
?
β
0
+
?
β
1
x? ?σZ
α/2
y
2
=?y +?σZ
α/2
=
?
β
0
+
?
β
1
x +?σZ
α/2
C4AG?B5 xB1A4AWC1DEASAYCX x BKCWB6B9A1
2. A2B2AVAXAAA8A6AS
(1)A0BRBYBL
CZADBC Y CCADBC X
1
, X
2
, ···, X
p?1
A2CABABOCMB4
Y = β
0
+ β
1
X
1
+···+ β
p?1
X
p?1
+ e,
CCCY e ~ N(0,σ
2
), β
0
,β
1
,···,β
p?1
,σ
2
D9BZCRAPA0A4 p ?1 ≥ 2,AYASBWCFBABOD5COBYBLA5
(2)APA0CKDG
CZ (x
i1
,x
i2
,···,x
ip?1
,y
i
),i=1,2,···,nD9 (X
1
,X
2
,···,X
p?1
,Y) BK n B9BSB7CNARCTA4
BK
y =(y
1
,y
2
,···,y
n
)
T
,β=(β
0
,β
1
,···,β
p?1
)
T
,e=(e
1
,e
2
,···,e
n
)
T
,
CX
X =
?
?
?
?
?
?
?
?
?
1 x
11
x
12
··· x
1p?1
1 x
21
x
22
··· x
2p?1
.
.
.
.
.
.
.
.
.
.
.
.
1 x
n1
x
2n
··· x
np?1
?
?
?
?
?
?
?
?
?
,
4
AWC1CQBV β BKDCBIBYB1CKDG
?
β =
parenleftBig
X
T
X
parenrightBig
?1
X
T
y.
BABXAWBJAKBVD5COC2B2AS
?
Y =
?
β
0
+
?
β
1
X
1
+···+
?
β
p?1
X
p?1
.
AY ?e = y ? X
?
β ASAQAUBGBCA1AKAWCK ?σ
2
=?e
T
?e/(n ? p) AS σ
2
BKCKDGA2AYAS σ
2
BKDCBIBYB1
CKDGA3A4AWC1CQBVA6 E
?
σ
2
= σ
2
.
(3)B7D2BOA3BV
(i) D5COB4A0BKB7D2BOA3BV
H
j0
: β
j
=0,j=1,2,···,p?1.
BH H
j0
B0B7D3A4AODGBC
T
j
=
?
β
j
?σ
√
c
jj
~ t
n?p
.
CCCY c
jj
D9 C =(X
T
X)
?1
BKBVAABACWBO j +1CFA8A1BVCBCGBQBKB7D2BOA2CA α,A3BVBKAO
ARCDAS
W =
braceleftbigg
|T|≥t
n?p
parenleftbigg
α
2
parenrightbiggbracerightbigg
.
(ii) D5COC2B2BKB7D2BOA3BV
H
0
: β
1
= β
2
= ···= β
p?1
=0 ←→ H
1
: β
1
,β
2
,···,β
p?1
AKCLAS0.
BH H
0
B0B7D3A4AODGBC
F =
SS
D6
/(p ?1)
SS
B2
/(n ? p)
~ F
p?1,n?p
,
CCCY SS
D6
=
n
summationtext
i=1
(?y
i
? ˉy)
2
, SS
B2
=
n
summationtext
i=1
(y
i
? ?y
i
)
2
. BVCBCGBQBKB7D2BOA2CA α, A3BVBKAOARCD
AS
W = {F>F
p?1,n?p
(α)}.
3. A4DGA6AS
(1)BGC3A8C2AUC4B3
CZDDBVCYADD2BKC3A8ASA,C3A8ADB7BKAKALD6?AYASA2CAA4DHAS A
1
, A
2
, ···A
r
. CJA2
CA A
i
B6DDCTCAB9DDBVA4AXBTA8A2CA A
i
B6BKDDBVADCP x
i1
, x
i2
, ···, x
in
i
AUDEB1D8BO iCECP
5
?D9AGX
i
~ N(μ + α
i
,σ
2
)BKBWABCNARCTA4COB5 μAFD8D9BKASCTA4 α
i
ASA2CA A
i
BVCU?
BKBJC6A4AWC1BVCQ
r
summationtext
i=1
n
i
α
i
=0.ACABC3A8A BK r CEA2CABKBJC6DEA3BVA0CZA6
H
0
: α
1
= α
2
= ···= α
r
=0,H
1
: α
1
,α
2
,···,α
r
AKCLASBHA5
DH
S
A
=
r
summationdisplay
i=1
n
i
summationdisplay
j=1
(x
i.
? x)
2
=
r
summationdisplay
i=1
n
i
(x
i.
? x)
2
, x
i.
=
1
n
i
n
i
summationdisplay
j=1
x
ij
,S
E
=
r
summationdisplay
i=1
n
i
summationdisplay
j=1
(x
ij
? x
i.
)
2
,
CQCPCGA0CZH
0
B0B7A4CLCA
F =
S
A
/(r ?1)
S
E
/(n ? r)
~ F
r?1,n?r
.
BVCGBQBKB7D2BOA2CA α CT F>F
r?1,n?r
(α), CLAOARCGA0CZA4CNASC3A8 A BK r CEA2CA
CAB7D2AUC2A1AXBTBYAWC1AKCQDGA9 P CTBKC2BZB1AQBQD9ACDHD3D9AOARCGA0CZA1 P CTAS
P = P{Fr?1,n? r>F},BH P CTBICBα D3AXBTAOARH
0
. AKAWA8DGA9ADCPBFB0AFBKBMD7
A2A5AF9.1A3A1
AF9.1 BGC3A8C2AUC4B3AF
C2AUB1CH CAC2CX D8C9BT ASC2 FAC PCT
C3A8A S
A
r ?1 MS
A
=
S
A
r?1
B1 AU S
E
n? r MS
E
=
S
E
n?r
F =
MS
A
MS
E
D9 CX S
T
n?1
(2)A1C3A8C2AUC4B3
CZCABBCEC3A8 ACXB,C3A8ACAr CEA2CA A
1
, A
2
, ···, A
r
,C3A8B CAsCEA2CA B
1
, B
2
,
···, B
s
.
(i) AKAVBNA9D1DEC8
CJC3A8 A, B BKBSC0CZA2CABCC7 (A
i
,B
j
) B6AHBNC0B9BSB7DDBVBJBICNARCT x
ij
, i =
1,2,···,r, j =1,2,...,s. A0BQ
X
ij
~ N(μ + α
i
+ β
j
,σ
2
),i=1,2,···,r, j=1,2,···,s,
CGCF X
ij
BBD1BSB7A5 α
i
ASC3A8ABKBOiCEA2CABKBJC6A4 β
j
ASC3A8B BKBOj CEA2CABKBJ
C6A5B8D3C6BUC3A8A, B BKC7BED9C5B7D2BLA1CBA3BVB6BFA0CZA6
H
01
: α
1
= α
2
= ···= α
r
=0,
H
02
: β
1
= β
2
= ···= β
s
=0.
6
DH
S
T
=
r
summationdisplay
i=1
s
summationdisplay
j=1
(x
ij
? x)
2
,
S
E
=
r
summationdisplay
i=1
s
summationdisplay
j=1
(x
ij
? x
i.
? x
.j
+ x)
2
,
S
A
= s
r
summationdisplay
i=1
(x
i.
? x)
2
,
S
B
= r
s
summationdisplay
j=1
(x
.j
? x)
2
,
x
i.
=
1
s
s
summationdisplay
j=1
x
ij
,i=1,2,···,r,
x
.j
=
1
r
r
summationdisplay
i=1
x
ij
,j=1,2,···,s,
x =
1
rs
r
summationdisplay
i=1
s
summationdisplay
j=1
x
ij
,
S
T
ASD9B3AUCAC2CXA4S
E
ASB1AUCAC2CXA4S
A
ASC3A8ABKCAC2CXA4S
B
ASC3A8B BKCAC2
CXA5AWC1CQBVBH H
01
B0B7D3
F
A
=
S
A
/(r ?1)
S
E
/(r ?1)(s ?1)
~ F
r?1, (r?1)(s?1)
,
B2A6BNA4BHH
02
B0B7D3
F
B
=
S
B
/(s ?1)
S
E
/(r ?1)(s ?1)
~ F
s?1, (r?1)(s?1)
,
C4AGC1 F
A
, F
B
DEASH
01
, H
02
BKA3BVAODGBCA4A8A3BVADCPBFB0C2AUC4B3AFA5
AF9.2 A1C3A8C2AUC4B3AF
C2AUB1CH CAC2CX D8C9BT ASC2 FAC PCT
C3A8A S
A
r ?1 MS
A
=
S
A
r?1
F
A
=
MS
A
MS
E
C3A8B S
B
s ?1 MS
B
=
S
B
s?1
F
B
=
MS
B
MS
E
B1 AU S
E
(r ?1)(s ?1) MS
E
=
S
E
(r?1)(s?1)
D9 CX S
T
rs?1
A8AFCYBBC6BK P CTCCB7D2BOA2CA α ACABA4BH P<αD3AOARCGA0CZH
01
D9 H
02
,CNASC9C3
A8BKCFA2CABJC6A2BBCJB7D2AUC2A5
7
(ii) AVBNA9D1DEC8
CZCABBCEC3A8 A, B. C3A8 A CA r CEA2CA A
1
, A
2
, ···, A
r
, C3A8 B CA s CEA2CA B
1
,
B
2
, ···, B
s
,BSCZA2CABKBCC7 (A
i
,B
j
)B6ASDED0C7DDBV t B9A5DHBOk B9BKCNARCTASx
ijk
. A8
x
ijk
,k=1,2,···,tAUDEB1D8BO ij CED9AGX
ij
BKBWABCNARCTA4A0CZ
X
ij
~ N(μ + α
i
+ β
j
+ δ
ij
,σ
2
),i=1,2,···,r; j =1,2,···,s.
CGCF X
ij
BBD1BSB7A4CCCY δ
ij
AFD8 A
i
CX B
i
BKA9D1BJC6A4 α
i
ASC3A8ABKBOiCEA2CABKBJ
C6A4β
j
ASC3A8B BKBOj CEA2CABKBJC6A5B8D3C6BUC3A8A, B DDA9D1BJC6BKC7BED9C5B7D2
BLA1CBA3BVB6BFA0CZA6
H
01
: α
1
= α
2
= ···= α
r
=0,
H
02
: β
1
= β
2
= ···= β
s
=0,
H
03
: δ
ij
=0,i=1,2,···,r; j =1,2,···,s.
DH
S
T
=
r
summationdisplay
i=1
s
summationdisplay
j=1
t
summationdisplay
k=1
(x
ijk
? x)
2
S
E
=
r
summationdisplay
i=1
s
summationdisplay
j=1
t
summationdisplay
k=1
(x
ijk
? x
ij.
)
2
S
A
= st
r
summationdisplay
i=1
(x
i.
? x)
2
S
B
= rt
s
summationdisplay
j=1
(x
.j
? x)
2
S
A×B
= t
r
summationdisplay
i=1
s
summationdisplay
j=1
(x
ij.
? x
i..
? x
.j.
+ x)
2
x
ij.
=
1
t
t
summationdisplay
k=1
x
ijk
,i=1,2,···,r, j=1,2,...,s,
x
i..
=
1
st
s
summationdisplay
j=1
t
summationdisplay
k=1
x
ijk
,i=1,2,···,r,
x
.j.
=
1
rt
r
summationdisplay
i=1
t
summationdisplay
k=1
x
ijk
,j=1,2,···,s,
x =
1
rst
r
summationdisplay
i=1
s
summationdisplay
j=1
t
summationdisplay
k=1
x
ijk
8
S
T
ASD9B3AUCAC2CXA4S
E
ASB1AUCAC2CXA4S
A
ASC3A8ABKCAC2CXA4S
B
ASC3A8B BKCAC2
CXA4S
A×B
ASA9D1BJC6CAC2CXA5AWC1CQBVA6
BH H
01
B0B7D3A4
F
A
=
S
A
/(r ?1)
S
E
/(rs(t ?1))
~ F
r?1,rs(t?1)
.
BH H
02
B0B7D3A4
F
B
=
S
B
/(s ?1)
S
E
/(rs(t ?1))
~ F
s?1,rs(t?1)
.
BH H
03
B0B7D3A4
F
A×B
=
S
A×B
/(r ?1)(s ?1)
S
E
/(rs(t ?1))
~ F
(r?1)(s?1),rs(t?1)
.
C4AGC1 F
A
, F
B
, F
A×B
DEASH
01
, H
02
, H
03
BKA3BVAODGBCA4A8A3BVADCPBFB0C2AUC4B3AFA6
AF9.3 A1C3A8C2AUC4B3AF
C2AUB1CH CAC2CX D8C9BT ASC2 FAC PCT
C3A8A S
A
r ?1 MS
A
=
S
A
r?1
F
A
=
MS
A
MS
E
C3A8B S
B
s ?1 MS
B
=
S
B
s?1
F
B
=
MS
B
MS
E
A9D1BJC6A × B S
A×B
(r ?1)(s ?1) MS
A×B
=
S
A×B
(r?1)(s?1)
F
A×B
=
MS
A×B
MS
E
B1 AU S
E
rs(t ?1) MS
E
=
S
E
rs(t?1)
D9 CX S
T
rst?1
A3A0ACAYAZAL
1. CNAYC0CFBABOD5COC4B3BKDAABA4BDCXDAABC2BZA4D7CID5COC2B2CYATCRAPA0BKCKDGCTA4
D7DEBBCMBOA3BVA4D7B6C8BABOD5COC2B2AHBNCEARA5
2. BD?BWCFBABOD5COBKDAABC2BZA4BD?BWCFBABOBBCMBKB7D2BOA3BVA1
3. CNAYBGC3A8C2AUC4B3BKDAABA4BDCXDAABC2BZA5
4. BD?A1C3A8C2AUC4B3BKDAABA4BDCXDAABC2BZA5
B4A0: C0CFBABOD5COC4B3BKDAABA4BDCXDAABC2BZA5BGC3A8C2AUC4B3BKDAABA4BDCXDAABC2
BZA5
AJA0: C8D5COC4B3A4C2AUC4B3BKDAABA4BDB7B4D5DIAWAFA4B6C8DGA9DBD9C6C8A0BRCSA6DDBB
C6BKAODGDGA9A5
9
ANA0A1AWAHAQA6AS
AG1. B8CA10DBCNARA0APA4C9B6AFCGB5A6
x 0.5 ?0.80.9 ?2.86.52.31.65.1 ?1.9 ?1.5
y ?0.3 ?1.21.1 ?3.54.61.80.53.8 ?2.80.5
(1)CI Y BV X BKBABOD5COC2B2A7(2)A3BVD5COC2B2BKB7D2BOA5
AD(1)DGA9AWCJB6AFCWAHBN
BPCW x
i
y
i
x
2
i
y
2
i
x
i
y
i
1 0.50 ?0.30 0.25 0.09 ?0.15
2 ?0.80 ?1.20 0.64 1.44 0.96
3 0.90 1.10 0.81 1.21 0.99
4 ?2.80 ?3.50 7.84 12.25 9.80
5 6.50 4.60 42.25 21.16 29.90
6 2.30 1.80 5.29 3.24 4.14
7 1.60 0.50 2.56 0.25 0.80
8 5.10 3.80 26.01 14.44 19.38
9 ?1.90 ?2.80 3.61 7.84 5.32
10 ?1.50 0.50 2.25 0.25 ?0.75
summationtext
9.90 4.50 91.51 62.17 70.39
C9AFCYA0APDGA9AWBJ
x =
1
n
n
summationdisplay
i=1
x
i
=
9.9
10
=0.99,
y =
1
n
n
summationdisplay
i=1
y
i
=
4.5
10
=0.45,
S
xx
=
n
summationdisplay
i=1
(x
i
? x)
2
=
n
summationdisplay
i=1
x
2
i
? n(x)
2
=91.51 ?10×0.99
2
=81.71,
S
yy
=
n
summationdisplay
i=1
(y
i
? y)
2
=
n
summationdisplay
i=1
y
2
i
? n(y)
2
=62.17 ?10×0.45
2
=60.15,
S
xy
=
n
summationdisplay
i=1
(x
i
? x)(y
i
?y)=
n
summationdisplay
i=1
x
i
y
i
? nxy =70.4?10 ×0.99×0.45 = 65.94,
10
?
β
1
=
S
xy
S
xx
=
65.94
81.71
=0.81,
?
β
0
= y ?
?
β
1
x =0.45 ?0.81 ×0.99 = ?0.35,
?
σ
2
=
n
summationtext
i=1
(y
i
?
?
β
0
?
?
β
1
x
i
)
2
n ?2
=0.867.
AKBVD5COC2B2AS
?
Y = ?0.35 + 0.81X.
(2)C2BZC0A6B6C8 F A3BVBZA4DGA9
F =
?
β
2
1
S
xx
?σ
2
=
0.81
2
×81.71
0.87
=61.61,
ASAFBJF
1,8
(0.05) = 5.32. C3ASF =61.61 > 5.32,ADC1AOARH
0
,CNAS X CC Y BKBABOCMB4B7
D2A5
C2BZBYA6B6C8BBCMB4A0A3BVBZA4DGA9
R =
S
xy
radicalbig
S
xx
S
yy
=
65.94
√
81.71 ×60.15
=0.94,
ASBBCMB4A0AFBJ r
8
(0.01) = 0.765. C3ASR =0.94 > 0.765, ADC1CNAS X CC Y BKBABOCMB4B7
D2A5
AH2. CZ
y
1
= β
1
+ e
1
y
2
=2β
1
?β
2
+ e
2
y
3
= β
1
+2β
2
+ e
3
CCCY e
1
, e
2
, e
3
BBD1BSB7A4CGCA E(e
i
)=0,Var(e
i
)=σ
2
, i =1,2,3, CI β
1
, β
2
BKDCBIBYB1CK
DGA5
?
X =
?
?
?
?
?
10
2 ?1
12
?
?
?
?
?
,X
T
X =
?
?
60
05
?
?
,
?
β =(X
T
X)
?1
X
T
y
11
=
?
?
1
6
0
0
1
5
?
?
?
?
121
0 ?12
?
?
?
?
?
?
?
y
1
y
2
y
3
?
?
?
?
?
=
?
?
1
6
(y
1
+2y
2
+ y
3
)
1
5
( ? y
2
+2y
3
)
?
?
DE β
1
, β
2
BKDCBIBYB1CKDGAS
?
β
1
=
1
6
(y
1
+2y
2
+ y
3
),
?
β
2
=
1
5
(?y
2
+2y
3
).
AH3. CHAPAKBVCRA4CJCMBKD0CDBBBLBKAJA6B6A4CCBSBTBKDEACBTY CCAGD0X
1
A0C4BI
X
2
CACMA5B8DEDCBD 13BWC1D7BKARBCA0APA4A5AF 9.4. DDA7B7Y CMCB X
1
,X
2
BKBABOD5COC2
B2A1
AF9.4 BSBTA0AP
AGD0 x
1
(kg) 76 91.585.582.57980.574.579 8576.582 9592.5
C4BI x
2
(AB) 50 20 20 30 30 50 60 50 40 55 40 40 20
DEACBTy(CUBUCID3) 120 141 124 126 117 125 123 125 132 123 132 155 147
?:
?
β =(X
T
X)
?1
X
T
y =
?
?
?
?
?
13 1079.5 505
1079.5 90159.75 41167.5
505 41167.5 21925
?
?
?
?
?
?1?
?
?
?
?
1690
141138.5
64935
?
?
?
?
?
=
?
?
?
?
?
?62.9634
2.1366
0.4002
?
?
?
?
?
BJBIy CC X
1
,X
2
BKAKBVD5COC2B2AS
?
Y = ?62.9634 + 2.1366X
1
+0.4002X
2
.
AKDGA9BJBISS
D6
= 1430.5699, SS
B2
=81.4301, C3B8CAA4
F =
SS
D6
/(p ?1)
SS
B2
/(n ? p)
=
1430.5699/2
81.4301/10
=87.8404.
ASAFBJF
2,10
(0.05) = 4.1028. C3ASF =87.8404 > 4.1028,ADC1CNASD5COC2B2C3CYB2BTBACVA5
12
AH4. B6C8A5CZAKALC7C2BKANBE A
1
,A
2
,A
3
,A
4
D1AVB5B1BKCFA6A4ARBJCCD6C8DFBXCQB6
AF9.5 CFA6DFBXA0AP
ANBE D6 C8 DF BX
A
1
1600 1610 1650 1680 1700 1700 1780
A
2
1500 1640 1400 1700 1750
A
3
1640 1550 1600 1620 1640 1600 1740 1800
A
4
1510 1520 1530 1570 1640 1600
AWA6A5CZAKALC7C2B6CFA6BKD6C8DFBXCAAZB7D2BKAUC2A8
? ANBEBKC7C2ASC3A8A4A5CZAKALBKC7C2ASA5CEA2CAA4A5CZAKALC7C2D1AVB5BKCFA6BK
D6C8DFBXDCASA5CED9AGA4A5CED9AGBKASCTASμ
i
, i =1,···,4A4CTBXA3BVA5CZAKALC7C2D1AV
B5BKCFA6BKCAASD6C8DFBXD9C5CAB7D2BKAUC2DEA3BVA6
H
0
: μ
1
= μ
2
= μ
3
= μ
4
←→ H
1
: μ
1
,···,μ
4
CYCVCXCABBCEAKBBBLA5
AKCQDGA9A8ADCPAICRC2AUC4B3AF
AF9.6 CFA6DFBXA0APBKC2AUC4B3AF
C2AUB1CH CAC2CX D8C9BT ASC2 FAC PCT
C3A8A 49212.35 3 16404.12
B1 AU 166622.26 22 7573.74 2.166 0.1208
D9 CX 215834.62 25
CK α =0.05 ASAFBJBGAFCT F
0.05
(3,22) = 3.05. C3AS2.161 < 3.05, ADC1ACDH H
0
, CNASA5CZ
ANBED1AVB5BKCFA6BKCAASDFBXAZB7D2AUC2A1BJAPCHAP PCTBECB0.05BYAWC1A3BVALBWBKAD
BOA1
AH5. BIA9DICJACCZBD 3CZAKALATBLBKCVCSCBATD0BKBBD8AHA0CQB6
AF9.7 A9DIDDBVA0AP
ATBL BB D8 CO A0
1 2432477 2 254
2 5 6 851071212 6 6
3 71166 7 9 5 5 106310
13
C6BUBIA9DIAAD4CYCUCZATBLD0BKCAASBBD8AHA0CAAZB7D2AUC2A8
? CZBIA9DIAAD4CYBKCVCSCBATASC3A8A4CUCZAKALBKATBLASCUCEA2CAA4ACCZD0BKBBD8
AHA0AUDEB1D8CUCECP?C4ALD9AG N(μ
i
,σ
2
)BKBWABCNARCTA4 i =1,2,3. AWAFCOADASA3BVA6
H
0
: μ
1
= μ
2
= μ
3
←→ H
1
: μ
1
,μ
2
,μ
3
AKCLBBBLA5
AKDGA9AWBJ
AF9.8 A9DIDDBVC2AUC4B3AF
C2AUB1CH CAC2CX D8C9BT ASC2 FAC PCT
C3A8A 94.26 2 47.13
B1 AU 166.65 30 5.56 8.484 0.0012
D9 CX 260.91 32
PCTCIBICB0.01C6AOARCGA0CZA4DECNASBIA9DICJACCZCUCZAKALATBLBKCVCSCBATD0BKBBD8
AHA0CAB7D2BKAUC2A5
AH6. CJC0CEC5BZDDBVCYA4AVBNA5CZAKALBKCZD7C9CZ A
1
, A
2
, A
3
, A
4
CXCUCZAKALBKD2
C3C2BZ B
1
, B
2
, B
3
BJBIAVBCA0APCQAF 9.9(BGAUA6 kg).
AF9.9 C5BZDDBVA0AP
B
1
B
2
B
3
A
1
325 292 316
A
2
317 310 318
A
3
310 320 318
A
4
330 370 365
DDC4B3CZD7CCD2C3BVAVBCCAAZB7D2C7BEA8
? AKCQDGA9AHA8ADCPAICRC2AUC4B3AF
AF9.10 C5BZDDBVBKC2AUC4B3AF
C2AUB1CH CAC2CX D8C9BT ASC2 FAC PCT
C3A8A(C9CZ) 3824.25 3 1274.75 5.226 0.04126
C3A8B(D2C3BZ) 162.50 2 81.25 0.3331 0.72915
B1 AU 1463.50 6 243.90
D9 CX 5444.75 11
14
CHAPPCTA3BVAKALC9CZBVAVBCCAB7D2C7BEA4BXBRCAB3C4B4C9A3BVD2C3C2BZBVAVBCCAB7D2
BKC7BEA1
AH7. BUANDJCZCCBNB4AUCWBVA7DJD1AXBKC7BEA4BVA5CEBNCJBKCUCZALBIA7DJBKCSAMAH
BNARBCBJBIA0APCQB6 (BGAUA6 cm)
AF9.11 A7DJCSAMA0AP
B
1
B
2
B
3
B
4
23 25 21 14
15 20 17 11
A
1
26 21 16 19
13 16 24 20
21 18 27 24
28 30 19 17
22 26 24 21
A
2
25 26 19 18
19 20 25 26
26 28 29 23
18 15 23 18
10 21 25 12
A
3
12 22 19 23
22 14 13 22
13 12 22 19
A
1
,A
2
,A
3
AFD8CUCEAKALDJCZA4B
1
,B
2
,B
3
,B
4
AFD8A5CEAKALBNCJA1BVBSC0CZA2CADBCYA4AH
BNBD5B9ARBCA4BVB8DDBVADCPAHBNC2AUC4B3A5
? AKDGA9A4AHA8DGA9ADCPAICRC2AUC4B3AF
AF9.12 A7DJCSAMA0APBKA1C3A8C2AUC4B3AF
C2AUB1CH CAC2CX D8C9BT ASC2 FAC PCT
C3A8A 352.53 2 176.27 9.1369 0.0004341
C3A8B 58.05 3 19.35 1.0030 0.3996331
A9D1BJC6A× B 119.60 6 19.93 1.0333 0.4156274
B1 AU 926.00 48 19.29
D9 CX 1456.18 59
15
AWA5CJB7D2BOA2CA α =0.05B6DJCZ(BN)BJC6D9CDBTB7D2BKA4BXAUCW(BF)BJC6DDA9D1BJC6
AHAKB7D2A5
AOA0AIAUAQ
1. AIAXAF
(1)D5COC4B3D9BUANADBCA2 CMB4BKC0CZA0B4AODGC2BZA5
(2)C0CFBABOD5COBYBLCYβ
0
, β
1
BKDCBIBYB1CKDGD9CUD6 BDBIDCBIBK
?
β
0
CX
?
β
1
. AKDGA9AWBJ
?
β
0
= ,
?
β
1
= .
(3)C0CFBABOD5COBYBLCYA4D5COB4A0BKB7D2BOA3BVAKAWAOC8 CZC2BZA4CCCY
A3BVBZCC A3BVBZBLA1A5 t A3BVBZBKA3BVAODGBCAS ,
A3BVBKAOARCDAS .FA3BVBZBKA3BVAODGBCAS , A3BVBKAOARCDAS
.
(4) C0CFBABOD5COCYA4BVCB X BKCGBQCT x
0
, Y
0
BKCWBKBTAS 1 ? α BKCEARCJA2AS
.
(5)BVBWCFBABOD5COBYBLBKAODGC4B3D1BXBX?AQBKCUCEAWAFD9 ,
CX .
(6) C2AUC4B3D1BXD9BVBWCECP?D9AGBKASCTDEA3BVA4C2BZD1BXDACB
BKA4BDA5
(7)CJC2AUC4B3CYDCAWC8BKA3BVBZAS .
2. BVC0CZB0B4C6D2CBCAASAVBTCCC6D2AHA0ARDDBJA0APCQB6
C6D2CBCAASAVBT x(
0
C) 11.814.715.616.817.118.819.520.4
C6D2AHA0y(AH) 30.117.316.713.611.910.78.36.7
(1)CI Y BV X BKC0CFBABOD5COC2B2A7
(2)BVD5COC2B2DEB7D2BOA3BV (α =0.05);
(3)CIBH x
0
=12D3 Y
0
BKCWBKBTAS 0.95BKCEARCJA2A5
3. C0CZD2D5C9CJCFAZDBCYBKBHDGBC Y CCC9AZDBBKCMAZ X
1
DDCMASDECR X
2
CACMA4B6
AFBFB515CEAZDBBKBHDGDHBM
16
AF9.13 D2D5C9BHDGA0AP
AZDB BHDGBC(BC) CMA0(CECM) CMASDFBTDECR(CF)
1 120 180 3254
2 162 274 2450
3 131 205 2838
4 223 375 3802
5 169 265 3782
6 67 86 2347
7 192 330 2450
8 81 98 3008
9 212 370 2605
10 103 157 2088
11 144 236 2660
12 232 372 4427
13 252 430 4020
14 55 53 2560
15 116 195 2137
(1)CI Y CC X
1
, X
2
BKBABOD5COC2B2A4AHBVD5COC2B2DEB5?DAA7
(2)BVD5COC2B2DEB7D2BOA3BV (α =0.01);
(3)CI x
1
= 220, x
2
= 2500D3A4BHDGBCBKCEARCTA5
4. ASA3ASB6BBCJB0CZAKALCPCDBKC4BECYADCRBKB5ATBKCEA0D9C5BBALA4BABSCZCPCDCY
AADBBQCKBLANA4AHCKB5C0BMCJB7AQALB6D2BVA4ARBJA0APCQB6
AF9.14 B5ATCNARA0AP
ANCW B5ATCEA0 /BSBM
1 24 15 21 27 33 23
2 14 712171416
3 11 9 7 13 12 18
4 77471218
5 19 24 19 15 10 20
AWCPCDBVC4BECYBKB5ATCEA0D9C5CAB7D2C7BEA8
17
5. C8CUCZAKALANBEBKBICHARBQC5B8AWA0BKDDBVADCPCQB6
AF9.15 C5B8AWA0DDBVA0AP
ANBE C5B8AWA0
AIB9 6.678 6.671 6.675 6.672 6.674
AG 6.683 6.681 6.676 6.678 6.679 6.672
AJ 6.661 6.661 6.667 6.667 6.664
AWAKALBKANBEBVC5B8AWA0BKARBQD9C5CAB7D2C7BEA8
6. CJC0BFDDBVCYA4AVBNCUCZAKALBKCRAMBC A
1
, A
2
, A
3
,CXA5CZAKALBKAVBT B
1
, B
2
, B
3
,
B
4
B6A4BJBICCANCFBTA0APCQB6A5
AF9.16 CCANCFBTA0AP
B
1
B
2
B
3
B
4
A
1
10.67.04.24.2
A
2
11.611.16.86.3
A
3
14.513.311.58.7
DDC4B3CRAMBC A CCAVBT B BVCCANCFBTCAAZB7D2C7BEA8
ARA0AIAUAQDIDF
1. (1)BBCM
(2) Q(β
0
,β
1
)=
n
summationtext
i=1
(y
i
? β
0
? β
1
x
i
)
2
; Y ?
?
β
1
x;
S
xy
S
xx
=
n
summationtext
i=1
(x
i
?x)(y
i
?y)
n
summationtext
i=1
(x
i
?x)
2
.
(3)CUA7 t; F; T =
?
β
1
√
S
xx
?σ
~ t
n?2
; W =
braceleftbig
|T|≥t
n?2
parenleftbig
α
2
parenrightbigbracerightbig
;
F =
?
β
2
1
S
xx
?σ
2
~ F
1,n?2
; W = {F ≥ F
1,n?2
(α)}.
(4)
parenleftbigg
?y
0
? t
n?2
parenleftbig
α
2
parenrightbig
?σ
radicalBig
1+
1
n
+
(x?x
0
)
2
S
xx
, ?y
0
+ t
n?2
parenleftbig
α
2
parenrightbig
?σ
radicalBig
1+
1
n
+
(x?x
0
)
2
S
xx
parenrightbigg
.
(5) BVD5COB4A0 β
0
,β
1
,···,β
p?1
DDC2AUσ
2
BKCKDGA7 BVCACMD5COB4A0A0D5COC2B2BK
BABOA0CZBKA3BVA7 CEARCXAYCXA1
(6)BVD9ADAUBKCAC2CXC4?BKA4BDA1
18
(7) FA3BVBZ
2. (1)D5COC2B2AS
?
Y =57.0393 ?2.5317X.
(2)B7D2BOA3BV F =89.868 >F
1,6
(0.05) = 5.9874, B7D2A1
(3) x
0
=12D3 Y
0
BKCWBKBTAS 0.95BKCEARCJA2AS
(26.6594 ?6.0415, 26.6594 + 6.0415) = (20.6179, 32.7009).
3. (1) D5COC2B2AS
?
Y =3.4526 + 0.4960X
1
+0.0092X
2
. C9AKBVD5COC2B2AWCRA4CTCLBQ
CMASDFBTDECRAKADA4CLCMAZBSCMDJ 1CECMA4BHDGBCCMDJ 0.496BCA7CTCLBQCMAZA0AKADA4CL
DECRBSCMDJ 1CFA4BHDGBCCMDJ 0.0092 BCA5
(2)DGA9BJ F = 5680 >F
2,12
(0.01) = 3.89, C3B8CNAS Y CC X
1
, X
2
BKBABOCMB4CDBTB7
D2A5
(3) A8 x
1
= 220, x
2
= 2500 BFCRAKBVD5COC2B2BJBHDGBCBKCEARCT (BPCKDG) AS
135.573(BC).
4. A8CPCDAUDEC3A8DEBGC3A85A2CAC2AUC4B3A4DGA9ADCPBFCRC2AUC4B3AF
AF9.17 B5ATA0APBKC2AUC4B3AF
C2AUB1CH CAC2CX D8C9BT ASC2 FAC PCT
C3A8A 803 4 200.7
B1 AU 557.2 25 22.29 9.008 1.1971 ×10
?4
D9 CX 1360 29
PCTCIBICB0.01,ADC1CNASCPCDBVC4BECYBKB5ATCEA0CAB7D2C7BEA5
5. A8ANBEAUDEC3A8A4DEBGC3A83A2CAC2AUC4B3A4ASD6DGA9ADCPCADACJBKAJBTA4BVBS
CEDDBVADCP x
ij
DDBABOADD4y
ij
=(x
ij
?6.660) ×1000D0A8DGA9ADCPBFCRC2AUC4B3AF
AF9.18 C5B8AWA0DDBVA0APBKC2AUC4B3AF
C2AUB1CH CAC2CX D8C9BT ASC2 FAC PCT
C3A8A 565.1 2 282.6
B1 AU 140.8 13 10.83 26.08 2.8158 ×10
?5
D9 CX 1360 29
PCTCIBICB0.01,ADC1CNASANBEBVC5B8AWA0ARBQBKC7BED9CDBTB7D2BKA5
19
6. DEA1C3A8C2AUC4B3A8DGA9ADCPBFCRC2AUC4B3AF
AKCQDGA9AHA8ADCPAICRC2AUC4B3AF
AF9.19 CCANCFBTA0APBKC2AUC4B3AF
C2AUB1CH CAC2CX D8C9BT ASC2 FAC PCT
C3A8A(CRAMBC) 60.74 2 30.37 33.54 0.5535 ×10
?3
C3A8B(AVBT) 64.58 3 21.53 23.77 0.9923 ×10
?3
B1 AU 5.433 6 0.9056
D9 CX 130.7 11
BBCE P CTBRCIBICB0.01,C3B8CNASCRAMBC A CCAVBT B BVCCANCFBTCAB7D2C7BEA5