1
计量经济学
(Econometrics)
2
第一章 绪论
第一节 什么是计量经济学?
计量经济学 ( Econometrics) 一词,又译经济计量
学,该词首次使用是在 1910年,但给该词赋予我们现
在所理解的那种含义 (即作为一个经济学学科 ),是挪
威经济学家弗里希 ( R,Frisch) 的功劳 。 从字面上
说, 该 词 含 义 是 经 济 测 量 ( Economic
measurement), 但实际上, 其含义要广得多 。 下
面引用几个比较权威的定义来说明这一点 。
3
一, 计量经济学定义
1 计量经济学是一个迅速发展的经济学分支,其目标
是给出经济关系的经验内容,
(, 新帕尔格雷夫经济学大词典,, 1990)
2,计量经济学可定义为实际经济现象的定量分析,这
种分析根据的是由适当推断方法联系在一起的理论和观
测的即时发展。计量经济学运用数理统计知识分析经济
数据,对构建于数理经济学基础上的数学模型提供经验
支持,并得出数量结果。
( P,A,萨米尔森等,1954)
3.计量经济学是将经济理论、数学和统计推断等工具
应用于 经济现象分析的社会科学 。
( A,S,戈德伯格,1964)
4
综合性定义
综合以上定义, 可以看出, 计量经济学是一个有关
经济关系的经验估计的经济学分支 。 计量经济学依据
经济理论, 使用数学和统计推断等工具, 用观测数据
对经济和商务活动进行实证研究, 测度和检验经济变
量间的经验关系, 从而给出经济理论的经验内容, 在
经济理论的抽象世界和人类活动的具体世界之间搭建
桥梁 。
5
计量经济学的理论基础
经济理论、数学和统计学知识是在计量经济学这一
领域进行研究的必要前提,这三者中的每一个对于真
正理解现代经济生活中的数量关系是必要的,但不充
分,只有结合在一起才行。因此,一个优秀的计量经
济学家必须是合格的数学家和统计学家,他(她)还
应该是一个经过系统经济学训练的经济学家。
6
计量经济学的三个要素
计量经济学的三个要素是经济理论、经济数据和统
计方法。对于解释经济现象来说,“没有计量的理论
”和“没有理论的计量”都是不够的,正如计量经济
学创始人之一的弗里希所强调的那样,它们的结合是
计量经济学的发展能够取得成功的关键。
7
计量经济学是经济预测的科学
计量经济学从根上说, 是对经验规律的认识以及将
这些规律推广为经济学, 定律, 的系统性努力, 这些
,定律, 被用来进行预测, 即关于什么可能发生或者
什么将会发生的预测 。 因此, 广义地说, 计量经济学
可以称为经济预测的科学 。
8
计量经济学的艺术成分
计量经济学虽然以科学原理为基础,但仍保留了一
定的艺术成分,主要体现在试图找出一组合适的假设
,这些假设既严格又现实,使得我们能够使用可获得
的数据得到最理想的结果,而现实中这种严格的假设
条件往往难以满足。
“艺术”成分的存在使得计量经济学有别于传统
的科学,是使人对它提供准确预测的能力产生怀疑的
主要原因。
9
二, 计量经济学的产生和发展
1.产生年代
计量经济学产生于上世纪三十年代 。
1930年 12月, 弗里希 ( R,Frisch), 丁伯根 (J.
Tinbergen)和费歇尔 (I,Fisher)等经济学家在美国克利
夫兰成立计量经济学会 。
1933年起, 定期出版, 计量经济学, 杂志 。 弗里
希在该杂志发刊词中明确提出计量经济学的范围和
方法, 指出计量经济学是经济理论, 数学和统计学
的综合, 但它又完全不同于这三个学科中的每一个 。
10
2,时代背景
计量经济学的产生,与当时的时代背景是密切相关
的。上世纪二十年代末期,在资本主义世界发生了严
重的经济危机,原有的经济理论失灵,产生了所谓的
“凯恩斯革命”。
在这种背景下,各国政府出于对经济的干预政策的
需要,企业管理层为了摆脱或减少经济危机的打击,
在经济繁荣时期获取更多的利润,要求采用计量经济
理论和方法,进行经济预测,加强市场研究,探讨经
济政策的效果,因而计量经济学应运而生。
11
3,学科发展环境
同时, 随着科学技术的发展, 各门学科相互渗透, 数
学, 系统论, 信息论, 控制论等相继进入经济研究领
域, 使经济科学进一步数量化, 有助于计量经济学的
发展 。 高速电子计算机的出现和发展, 为计量经济技
术的广泛应用铺平了道路 。
12
4,发展过程
上世纪三十年代,侧重于个别商品供给与需求的计
量,基本上属于个量分析或微观分析。
自四十年代起,计量经济研究的范围扩大到整个经
济体系,其特征是处理总量数据,如消费、储蓄、投
资、国民收入和就业等宏观经济总量的计量分析,亦
即总量分析或宏观分析。
五十年代起,在计量经济学的理论和方法得到迅速
发展的同时,宏观计量经济模型在计量经济学的应用
中开始占重要地位。 50年代末至 60年代初是宏观计量
经济模型蓬勃发展的时期,很多至今还在英、美等西
方国家运行的模型正是那个时期开发的。
13
5.我国 计量经济学研究状况
由于认识上的原因, 我国对计量经济学的广泛研究
和应用起步较晚, 始于 70 年代后期 。 经过这些年的发
展, 已经取得了长足的进步, 很多政府部门和学术机
构建立了计量经济模型进行经济预测和政策分析 。 我
们已大大缩小了在此领域与先进国家的差距 。 可以预
见, 计量经济学在促进我国国民经济的发展中将发挥
越来越大的作用 。
14
第二节 计量经济学方法
一, 计量经济学方法的内容
任何计量经济研究包含两个基本要素:理论和事实,
计量经济学的主要功能就是将这两个要素结合在一起 。
计量经济研究既使用理论, 也使用事实, 将二者结合
起来, 用统计技术估计经济关系, 如图 1.1所示 。
15
理 论
模 型
计量经济模型
事 实
数 据
加工好的数据
统计理论
计量经济技术
使用计量经济技术,用加工好的数据,
估计计量经济模型
结构分析 预 测 政策评价
图 1.1 计量经济学的研究方法
16
理论是任何计量经济研究的基本要素,但理论必
须以一种可用的形式给出。对于计量经济学来说,最
可用的形式,如图 1.1所示,就是模型( model)的形
式,具体地说,就是计量经济模型。模型概括了与所
研究的系统相关的理论,是理论用于实证研究的最方
便的方式。任何计量经济研究的一个必不可少的部分
是模型的设定,也就是构筑一个能够恰当地表示所研
究现象的计量经济模型。
17
计量经济研究的另一个基本要素是事实( facts),
指的是现实世界中与所研究现象相联系的事件。这
些事实导致代表相关事实的一组数据。
一般来说,数据必须以各种方式进行加工,使它
们能够适合于计量经济研究的使用。这种加工包括
各式各样的调整,如季节调整、插值、不同数据源
的合并,以及使用其它信息来修正数据等等,结果
是一组加工好的数据。
18
计量经济研究方法的下一步也是核心一步, 是两个
基本要素的结合, 即用加工好的数据估计计量经济模
型 。 这一步需要使用一批计量经济技术 。 计量经济技
术是经典统计学方法特别是统计推断技术的扩展 。 这
种扩展是必要的, 因为在估计计量经济模型时会遇到
一些特别的问题 。
上述过程的结果是一个估计好的计量经济模型, 所
谓估计模型就是依据有关数据估计模型的参数, 估计
好的模型可用于计量经济学的三个主要目的:结构分
析, 预测和政策评价 。
19
二, 计量经济分析的步骤
一般说来, 计量经济分析按照以下步骤进行:
( 1) 陈述理论 ( 或假说 )
( 2) 建立计量经济模型
( 3) 收集数据
( 4) 估计参数
( 5) 假设检验
( 6) 预测和政策分析
让我们通过一个例子来说明上述步骤 。 假设某空调生产
商请一个计量经济学家为他研究价格上涨对空调需求量
的影响, 该计量经济学家按上述步骤进行:
20
第一步:陈述理论
首先要做的是查找一下有关价格变动与需求量
之间关系的经济理论,众所周知的 需求定律 告诉
我们:
其他条件不变的情况下,一商品的价格上升,
则对该商品的需求量减少;反之,价格下降,需
求量增加。
简言之,一商品的价格与其需求量之间呈反
向关系,即需求曲线斜率为负。
21
第二步,建立计量经济模型
1,需求函数的数学模型
尽管需求定律假定价格 (P)与需求量 (Q)之间
呈反向关系, 但并没有给出二者之间关系的精
确形式 。 例如, 该定律并没有告诉我们价格与
需求量之间关系是线性的还是非线性的, 如图
1.2中 ( a) 和 (b) 所示 。
22
(a) (b)
Q
P
Q
P
图 1.2 线性和非线性的需求函数
23
事实上,斜率为负的曲线有千千万万,在它们
之中选择正确的函数是计量经济学家的任务。
如果 Q和 P 之间的关系是线性的,如图 1.2( a)
所示,则数学上需求函数可表示为:
Q = α +β P (1)
α 和 β 称为该 函数的 参数,它们是未知常数。
α 亦称为截矩,它给出 P为 0时 Q的值。 β 亦称为
斜率,它计量的是 P的单位变动所引起的 Q的变
动 率。
24
因变量和解释变量
( 1)式是反映 Q和 P 之间关系的数学模型,专
业点儿说,是 数理经济学模型 。在这样一个模
型中,等号左边的变量称为 因(应)变量
(dependent variable) 或 被解释变量 (explained
variable),等号右边的变量称为 自变量
(independent variable)或解释变量
(explanatory variable),在我们的例子中,Q
是因变量,P是解释变量,意味着我们用价格
的变动来解释需求量的变动 。
25
2.由 数学模型到计量经济模型
数学模型的缺陷
上段中 (1)式假定 价格 (P)与需求量 (Q)之间的一种精
确的或确定的关系,也就是说,对于一个给定的价格
,就确定一个唯一的需求量。在现实的经济变量之间
,极少存在这种关系,更常见的是不精确的关系。为
了说明这一点,我们根据表 1.1中 Q和 P的假设数据画出
一个散点图(图 1.3)。
26
数据表和散点图
表 1.1
P Q
0 78
1 70
2 69
3 63
4 60
5 58
-
-
-
i i i i i
80
Q
70
60
1 2 3 4 5
x
x
x
x x
x
P
图 1.3
27
图 1.3显示的是一种近似线性而非严格线性
的关系。为什么不是所有 6个点都位于数学模
型( 1)所规定的直线上呢?这是因为我们在
导出需求曲线时假定所有影响 Q的其它变量
保持不变,而实际上它们通常要变,这种变
动会对 Q产生一些影响。结果是,观测到的 Q
和 P 的关系可能不精确。
就象本例所展示的,现实中经济变量之间
的关系一般是一种不精确的关系,因此用
( 1)式这样的数学模型描述是不合适的,因
为它不能正确反映客观实际情况。
28
扰动项 (disturbance term )
为了解决这各问题,我们用一个, 一揽子
” 变量 u加进原数学模型中,u代表所有影响 Q
的其它因素的影响,u称为 扰动项 或 误差项 。
扰动项 u可以理解为这样一个变量,它反映
的是除了价格以外的其它所有帮助决定需求量
的因素。这些因素包括相对而言不重要因而未
引入模型的变量(如消费者的口味,他们的收
入,替代商品的价格等),还包括纯粹的随机
因素。
29
计量经济模型
引入扰动项 u后, 将需求函数写为:
Q = α +β P + u (2)
这是一个 计量经济模型, 这种类型的计量经济模型也
叫做 线性回归模型 。 在这样一个模型中, 扰动项 u代表
所有那些影响 Q但未被显式地引入模型的因素以及纯粹
的随机因素 。
经济学家与计量经济学家的主要区别是后者关心扰动
项 。 没有扰动项的关系称为 精确 的或 确定 的关系, 而有
扰动项的关系称为 随机 的关系 。 当我们用一个随机关系
式来预测被解释变量的精确值时, 结果往往有误差, 扰
动项被用来估量这些, 误差, 的大小 。
30
第三步,收集数据
在估计所设定的计量经济模型的参数之前,我
们必须首先得到适当的数据。
计量经济分析所需要的数据,既可来自各种
官方统计资料,亦可通过调查获得。
在经验分析中常用的数据有两种:
时间序列 数据和 横截面 数据( time series
and cross-section )
31
时间序列和横截面数据
? 时间序列 数据是按时间周期 ( 即按固定的时
间间隔 ) 收集的数据, 如年度或季度的国民生
产总值, 就业, 货币供给, 财政赤字或某人一
生中每年的收入都是时间序列的例子 。
? 横截面 数据是在同一时点收集的不同实体
( 如个人, 公司, 国家等 ) 的数据 。 如人口普
查数据, 世界各国 2000年国民生产总值, 全班
学生计量经济学成绩等都是横截面数据的例子 。
32
第四步:估计参数
有了如表 1.1中的 Q和 P数据,如何估计模型的参数 α 和
β?也就是说,如何求出这些参数的数值呢?我们将在
后面的课程中详细讨论估计方法,其基础是大家熟悉的
最小二乘法。这里,假设我们用 表 1中 Q和 P的数据估计(
2)式的参数 α 和 β 后得到估计好的需求函数:
= 76.05 - 3.88P (3)
其中 表示 Q的拟合值或预测值, 76.05和 –3.88是将 P
和 Q的数据代入 最小二乘法公式计算得出的 参数 α 和 β
的数值,称为 α 和 β 的 估计值 ( estimates) 。
Q?
Q?
33
估计好的需求函数
图 1.4
50
55
60
65
70
75
80
0 1 2 3 4 5
= 76.05 - 3.88 P
P
Q
Q?
34
估计值和估计量( Estimates and Estimators)
我们通常用希腊字母表示未知参数的真值 。 假设 β 是
一个我们想知道的参数值, 当然, 它的真值一般是得不
到的, 但可以对它进行估计 。 应用统计技术, 我们可以
得到 β 的合理估计值 。 在任何实际应用中, β 的 估计值
就是一个 数字, 如 β 被估计为 –3.88。
一般来说, 经济理论所关注的焦点并不是估计值, 而是
估计量, 估计量是用于将数据转换成估计值的 公式 。 之
所以更关注后者, 是因为从一特定样本计算的估计值是
不是好, 取决于估计方法 ( 估计量 ) 是不是好 。 β 的 估
计量 通常表示为 和 。*???
35
第五步:假设检验
估计好需求函数后,我们可能想知道估计的模型是
否有经济意义,即得到的结果是否符合所依据的经济理
论。
例如,P的系数是否为预期的负数?( 3)式表明确
实如此。
有些假设就不那么容易验证,比如说,若假设为
β = -4.0,我们能不能说 -3.88的观测值实际上与假设值
相同?也就是说我们的数据是否支持 β = -4.0的假设?
要检验这样一个假设,就需要使用统计学的工具。
36
第六步,预测和政策分析
现在回到估计好的需求函数 ( 3), 假设生产商要知
道价格变为 4.50千元时需求量是多少,换句话说,他想预
测 P=4.50千元时的 Q值 。 由 ( 3) 式, 可得到:
= 76.05 - 3.88P = 76.05-3.88*4.50 = 58.59万台
也就是说, 若价格为 4.50千元, 则需求量的预测值为
接近 59万台 。
由于计量经济模型包含扰动项, 因此用上述估计好的
模型所做预测总会存在误差, 与此同时, 由于 76.05 和
-3.88仅仅是真实的 α 和 β 的估计值,这将是我们的预测
中存在的另一个误差源 。
Q?
37
小结:计量经济分析的步骤
步骤 例子
1 陈述理论 ( 或假说 ) 需求定律
2 建立计量经济模型 Q = a + ?P + u
3 收集数据 表 1.1
4 估计参数 = 76.05 - 3.88P
5 假设检验 β < 0?
6 预测和政策分析 若 P=4.50,Q为多少?
Q?
38
第三节.计量经济模型及其应用
一, 单方程模型和联立方程模型
计量经济模型可分为两类:单方程模型和联立方程模型 。 单
方程模型用于描述一个应变量和若干个自变量之间的结构关系,
如上面 ( 2) 式所示 。 联立方程模型则由多个方程组成, 一般
用于描述整个经济系统或子系统 。 如最简单的宏观经济模型
Ct = α 0 + α 1Yt + u1t
It = β 0 + β 1Yt +β 2Yt-1 + u2t
Yt = Ct + It + Gt
其中, Yt = GDP,Ct = 消费, It = 投资, Gt = 政府支出 。
39
行为方程和恒等式
第一个方程是消费函数, 第二个方程是投资方程,
这类关系式描述的是消费者, 投资者等的行为, 因而
称为行为方程 。 前面的 需求函数 ( 2) 式也是一个 行
为方程, 描述的也是消费者的行为 。 第三个方程是
GDP恒等式, 恒等式亦称定义式, 是人为定义的一种
变量间的恒等关系 。
40
外生变量和内生变量
在我们的 简单宏观经济模型中,C,I和 Y是 内生
变量, G是 外生变量 。
内生变量是其值在模型内部确定的变量。由于在
求解模型时,通常是需要联立地解出所有内生变量
的值,因而称为联立方程模型。
外生变量是其值在模型之外决定的变量。模型中
使用它们,但不由模型决定它们的值。
41
设定外生变量的原则
在设定模型时,通常将以下两类变量设定为外生变
量:
( 1) 政策变量,如货币供给、税率、利率、政府支
出等。
( 2) 短期内很大程度上是在经济系统之外决定或变
化规律稳定的变量,如人口、劳动力供给、国外利率、
世界贸易水平、国际原油价格等。
42
二, 计量经济模型的应用
图 1.1还显示了计量经济学的三个主要目的:结构
分析,预测和政策评价,或者说是计量经济学的三项
应用。它们代表的是计量经济学的“终端”产品,正
如理论和事实代表的是它的“原材料”一样。因此,
我们可将图 1.1看成一个流程图,该图显示了计量经济
研究的不同部件是如何组装起来并最终投入使用的。
由于计量经济学的应用是通过计量经济模型实现的,
因此,计量经济学的三项应用也就是计量经济模型应
用的三个方面。
43
1,结构分析
结构分析是将估计好的计量经济模型用于经济关系
的数量研究, 即当一个或几个变量发生变化时会对其
它变量以至整个经济系统产生什么样的影响 。 结构分
析所采用的主要方法有弹性分析和乘数分析等 。
结构分析代表的是计量经济学的, 科学, 目的, 即
通过用模型和数据检验和验证经济关系来理解现实世
界的经济关系 。 结构分析的一个结果可能是对理论的
,反馈, 影响 。 例如, 对菲立普斯曲线, 即通货膨胀
率和失业率之间关系的数量研究, 已经导致了失业理
论的各种发展 。
44
2,预测
预测是用估计好的计量经济模型去预测一些变量在
实际观测的样本之外的数量值 。 预测往往是决策和行
动的基础, 市场预测和宏观经济预测都是如此 。
应用宏观计量经济模型进行经济预测, 是经济预测
的主要手段之一 。 西方发达国家主要宏观经济模型都
定期发布预测报告, 预测结果往往得到政府, 企业和
公众的重视 。 有专门机构对各主要模型的预测功能进
行定期评估 。
英、美很多模型班子有自己固定的客户,靠预测已
经可以以战养战了。如英国的 MDM和 OEF,美国的
WEFA,DRI和 INFORUM。
45
3,政策评价
计量经济模型的另一大应用是政策评价,也叫政策
分析或政策模拟,政策评价是用估计好的计量经济
模型在不同政策方案之间进行选择,通常作法是先
用模型做一个基准运行,也就是现行政策不变的情
况下,经济系统的运行结果,然后作一些政策假设
,如利率提高一个百分点,再运行模型,比较前后
两次运行的结果,如 GDP、通货膨胀率等宏观经济
变量值的变化,从而模拟出某项政策或政策组合的
效果。
46
第五节 统计和计量经济分析软件
计量经济分析离不开相应软件的使用,目前可供
选择的统计和计量经济分析软件很多,大致可分为
以下几种类型:
1.侧重于时间序列和计量经济分析的软

2, 侧重于统计分析的软件
3,包括强大的统计和计量经济分析功能
的大型综合软件包
47
1,侧重于时间序列和计量经济分析的软件
这 类 软 件 中 最 著 名 的 当 数 TSP ( Time Series
Processor),TSP最初装在大, 中型机上, 后来发展了
几种 PC机版本, 包括 PC-TSP,ESP和 Micro TSP,其
中最流行的是 Micro TSP,其特点是简单易学 。
其它长于时间序列分析的软件还有:
Eviews,RATS,DATA-FIT,PC-GIVE,
SORITEC,SHAZAM 和 GAUSS等。
48
2, 侧重于统计分析的软件
很多统计软件最初是为非经济学科, 如统计学,
其它自然科学和社会科学学科设计的, 主要用于统计
分析 。 这些软件经过扩展, 包括了基本的计量经济分
析功能, 但总的来看, 它们的统计分析功能要强于计
量经济分析功能 。 这类软件有:
MINITAB,P-STAT,SPSS,STATA,
STATGRAPHICS,STATPRO,SYSTAT等,
49
3.包括强大的统计和计量经济分析功能的
大型综合软件包
其代表是 SAS,它是集数据管理、数据分析和
信息处理为一体的大型应用软件系统。它是一种集
成软件,由十几个模块组成,用户可以根据应用的
类型调用不同模块或模块组合进行工作。 SAS的统计
分析和计量经济分析功能都很强。这部分功能是由
SAS/BASE,SAS/ASSIST,SAS/STAT,SAS/ETS
和 SAS/GRAPHIS等模块实现的。
50
小结
在本章中, 我们首先讨论了什么是计量经济学以及计量经济
学产生和发展的过程, 然后用一个简单的例子展示了计量经济
学方法解决问题的步骤:陈述理论;建立计量经济模型;收集
数据;估计参数;假设检验;预测和政策分析 。
任何计量经济研究包含两个基本要素:理论和事实, 计量经
济学的主要功能就是将这两个要素结合在一起 。 计量经济学的
应用是通过计量经济模型实现的, 计量经济模型可分为两类:
单方程模型和联立方程模型 。 它们可用于计量经济学的三个主
要目的:结构分析, 预测和政策评价 。
计量经济分析离不开相应软件的使用, 本章介绍了目前可供
使用的众多计量经济分析软件 。
51
复习思考题
1,试列出计量经济分析的主要步骤。
2,计量经济模型中为何要包括 扰动项?
3,什么是 时间序列和横截面数据? 试举例说明二者的
区别 。
4,估计量和估计值有何区别?