CHAPTER 21
ESTER ENOLATES
SOLUTIONS TO TEXT PROBLEMS
21.1 Ethyl benzoate cannot undergo the Claisen condensation, because it has no protons on its H9251-carbon
atom and so cannot form an enolate. Ethyl pentanoate and ethyl phenylacetate can undergo the
Claisen condensation.
21.2 (b) The enolate formed by proton abstraction from the H9251-carbon atom of diethyl 4-methylhep-
tanedioate cyclizes to form a six-membered H9252-keto ester.
CH
3
CH
2
OCCH
2
CH
2
CHCH
2
CH
2
COCH
2
CH
3
CH
3
O O
CH
3
CH
2
O
NaOCH
2
CH
3
OCH
2
CH
3
CH
3
O
O
C
Ethyl (5-methyl-2-oxocyclohexane)-
carboxylate
Diethyl 4-methylheptanedioate
OCH
2
CH
3
O
O
C
C
H
2
C CHCH
3
CH
2
CH
2
CH
H11002
2C
6
H
5
CH
2
COCH
2
CH
3
O
Ethyl phenylacetate Ethyl 3-oxo-2,4-diphenylbutanoate
C
6
H
5
CH
2
CCHCOCH
2
CH
3
O O
C
6
H
5
1. NaOCH
2
CH
3
2. H
3
O
H11001
2CH
3
CH
2
CH
2
CH
2
COCH
2
CH
3
O
Ethyl pentanoate Ethyl 3-oxo-2-propylheptanoate
CH
3
CH
2
CH
2
CH
2
CCHCOCH
2
CH
3
O O
CH
2
CH
2
CH
3
1. NaOCH
2
CH
3
2. H
3
O
H11001
576
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
ESTER ENOLATES 577
(c) The two H9251 carbons of this diester are not equivalent. Cyclization by attack of the enolate at
C-2 gives
This H9252-keto ester cannot form a stable enolate by deprotonation. It is present in only small
amounts at equilibrium. The major product is formed by way of the other enolate.
This H9252-keto ester is converted to a stable enolate on deprotonation, causing the equilibrium to
shift in its favor.
21.3 (b) Both carbonyl groups of diethyl oxalate are equivalent. The enolate of ethyl phenylacetate
attacks one of them.
(c) The enolate of ethyl phenylacetate attacks the carbonyl group of ethyl formate.
21.4 In order for a five-membered ring to be formed, C-5 must be the carbanionic site that attacks the
ester carbonyl.
O
O
H11002
H
3
C
CH
3
CH
2
O
Enolate of ethyl
4-oxohexanoate
CH
2
CH
2
C
C
CH
3
CH
2
O
O
O
H11002
CHH
3
C
H11001 OCH
2
CH
3
HC
O
C
6
H
5
CHCOCH
2
CH
3
H11002
O
Ethyl 3-oxo-2-
phenylpropanoate
C
6
H
5
CHCH
O
COCH
2
CH
3
O
C
6
H
5
CHCOCH
2
CH
3
CCOCH
2
CH
3
CH
3
CH
2
O
O OO
H11001 C
6
H
5
CHCCOCH
2
CH
3
COCH
2
CH
3
OO
O
Diethyl 2-oxo-3-
phenylbutanedioate
H11002
CH
3
CH
2
OCCHCH
2
CH
2
CH
2
COCH
2
CH
3
NaOCH
2
CH
3
O O
CH
3
Site of
carbanion
Enolate
attacks
this carbon.
Ethyl (3-methyl-2-
oxocyclopentane)-
carboxylate
O
CH
3
OCH
2
CH
3
O
C
CH
3
CH
2
OCCHCH
2
CH
2
CH
2
COCH
2
CH
3
NaOCH
2
CH
3
O O
CH
3
Site of
carbanion
Enolate attacks
this carbon.
Ethyl (1-methyl-2-
oxocyclopentane)-
carboxylate
O
O
CH
3
CH
2
OC
H
3
C
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
578 ESTER ENOLATES
21.5 The desired ketone, cyclopentanone, is derived from the corresponding H9252-keto ester. This key
intermediate is obtained from a Dieckmann cyclization of the starting material, diethyl hexanedioate.
First treat the diester with sodium ethoxide to effect the Dieckmann cyclization.
Next convert the H9252-keto ester to the desired product by saponification and decarboxylation.
21.6 (b) Write a structural formula for the desired product; then disconnect a bond to the H9251-carbon
atom.
Therefore
H11001 CH
2
CH
2
CCH
3
O
4-Phenyl-2-butanoneBenzyl bromide
CH
2
Br
Ethyl acetoacetate
CH
3
CCH
2
COCH
2
CH
3
O O
1. NaOCH
2
CH
3
2. HO
H11002
, H
2
O
3. H
H11001
4. heat
CH
2
CH
2
CCH
3
O
H11001
Required
alkyl halide
CH
2
X
Derived from
ethyl acetoacetate
CH
2
CCH
3
O
H11002
COCH
2
CH
3
O
O
Ethyl (2-oxocyclopentane)-
carboxylate
O
Cyclopentanone
1. HO
H11002
, H
2
O
2. H
H11001
3. heat
CH
3
CH
2
OCCH
2
CH
2
CH
2
CH
2
COCH
2
CH
3
O O
1. NaOCH
2
CH
3
2. H
3
O
H11001
COCH
2
CH
3
O
O
Ethyl (2-oxocyclopentane)-
carboxylate
Diethyl hexanedioate
CH
3
CH
2
O
2
C(CH
2
)
4
CO
2
CH
2
CH
3
O
COCH
2
CH
3
O
O
O
O
H
3
C H11001
H11002
OCH
2
CH
3
O
O
H11002
H
3
C
CH
3
CH
2
O
2-Methyl-1,3-
cyclopentanedione
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
(c) The disconnection approach to retrosynthetic analysis reveals that the preparation of 5-hexen-
2-one by the acetoacetic ester synthesis requires an allylic halide.
21.7 (b) Nonanoic acid has a CH
3
(CH
2
)
5
CH
2
@ unit attached to the synthon.
Therefore the anion of diethyl malonate is alkylated with a 1-haloheptane.
(c) Disconnection of the target molecule adjacent to the H9251 carbon reveals the alkyl halide needed
to react with the enolate derived from diethyl malonate.
H11001
Derived from
diethyl malonate
CH
2
COH
O
H11002
Required alkyl
halide
CH
3
CH
2
CHCH
2
X
CH
3
CH
3
CH
2
CHCH
2
O
CH
2
COH
CH
3
H11001
1-Bromoheptane
CH
3
(CH
2
)
5
CH
2
Br
Diethyl malonate
CH
2
(COOCH
2
CH
3
)
2
Diethyl 2-heptylmalonate
CH
3
(CH
2
)
5
CH
2
CH(COOCH
2
CH
3
)
2
Nonanoic acid
CH
3
(CH
2
)
5
CH
2
CH
2
CO
2
H
NaOCH
2
CH
3
ethanol
1. HO
H11002
, H
2
O
2. H
H11001
3. heat
H11001
Derived from
diethyl malonate
CH
2
COH
O
H11002
Required alkyl halide
CH
3
(CH
2
)
5
CH
2
XCH
3
(CH
2
)
5
CH
2
O
CH
2
COH
CH
2
COH
O
H11001
Allyl bromide
CHCH
2
BrH
2
C
5-Hexen-2-one
CHCH
2
CH
2
CCH
3
O
H
2
C
Ethyl acetoacetate
CH
3
CCH
2
COCH
2
CH
3
O O
1. NaOCH
2
CH
3
2. HO
H11002
, H
2
O
3. H
H11001
4. heat
H11001
Required
alkyl halide
CHCH
2
H
2
C
X
Derived from
ethyl acetoacetate
CH
2
CCH
3
O
H11002
H
2
C CHCH
2
O
CH
2
CCH
3
ESTER ENOLATES 579
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
The necessary alkyl halide in this synthesis is 1-bromo-2-methylbutane.
(d) Once again disconnection reveals the necessary halide, which is treated with diethyl malonate.
Alkylation of diethyl malonate with benzyl bromide is the first step in the preparation of
3-phenylpropanoic acid.
21.8 Retrosynthetic analysis of the formation of 3-methyl-2-butanone is carried out in the same way as
for other ketones.
The two alkylation steps are carried out sequentially.
CH
3
CCHCOCH
2
CH
3
NaOCH
2
CH
3
CH
3
Br
O O
CH
3
CH
3
CCH
2
COCH
2
CH
3
NaOCH
2
CH
3
CH
3
Br
O O
Ethyl acetoacetate Ethyl
2-methyl-3-oxobutanoate
1. HO
H11002
,
H
2
O
2. H
H11001
CH
3
CCCOCH
2
CH
3
O O
CH
3
H
3
C
Ethyl
2,2-dimethyl-3-oxobutanoate
CH
3
CCH(CH
3
)
2
O
3-Methyl-2-butanone
3. heat
2CH
3
XH11001CH
3
CCH
H11002
H11002
OO
CH
3
CCH CH
3
CH
3
3-Methyl-2-butanone
(two disconnections as shown)
Derived from
ethyl acetoacetate
H11001
Benzyl bromide
C
6
H
5
CH
2
Br
Diethyl malonate
CH
2
(COOCH
2
CH
3
)
2
NaOCH
2
CH
3
ethanol
Diethyl 2-benzylmalonate
C
6
H
5
CH
2
CH(COOCH
2
CH
3
)
2
1. HO
H11002
, H
2
O
3-Phenylpropanoic acid
C
6
H
5
CH
2
CH
2
COH
O
2. H
H11001
3. heat
H11001
Derived from
diethyl malonate
CH
2
COH
O
H11002
Required
halide
C
6
H
5
CH
2
XC
6
H
5
CH
2
O
CH
2
COH
H11001
Diethyl malonate
CH
2
(COOCH
2
CH
3
)
2
NaOCH
2
CH
3
ethanol
1-Bromo-2-methylbutane
CH
3
CH
2
CHCH
2
Br
CH
3
1. HO
H11002
, H
2
O
2. H
H11001
3. heat
Diethyl 2-(2-methylbutyl)malonate
CH
3
CH
2
CHCH
2
CH(COOCH
2
CH
3
)
2
CH
3
4-Methylhexanoic acid
CH
3
CH
2
CHCH
2
CH
2
COH
CH
3
O
580 ESTER ENOLATES
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
21.9 Alkylation of ethyl acetoacetate with 1,4-dibromobutane gives a product that can cyclize to a five-
membered ring.
Saponification followed by decarboxylation gives cyclopentyl methyl ketone.
21.10 The last step in the synthesis of pentobarbital is the reaction of the appropriately substituted deriva-
tive of diethyl malonate with urea.
The dialkyl derivative of diethyl malonate is made in the usual way. It does not matter whether the
ethyl group or the 1-methylbutyl group is introduced first.
CH
2
(COOCH
2
CH
3
)
2
Diethyl malonate
CH
3
CH
2
CH
2
CH
CH
3
CH
3
CH
2
C(COOCH
2
CH
3
)
2
Diethyl 2-ethyl-2-(1-methylbutyl)malonate
2. NaOCH
2
CH
3
, CH
3
CH
2
Br
1. NaOCH
2
CH
3
, CH
3
CH
2
CH
2
CHCH
3
Br
H11001
COCH
2
CH
3
COCH
2
CH
3
CH
3
CH
2
CH
2
CH
CH
3
CH
3
CH
2
C
O
O
Diethyl 2-ethyl-2-(1-methylbutyl)malonate
H
2
NCNH
2
O
Urea
CH
3
CH
2
CH
2
CH
CH
3
CH
2
O
N
N
O
O
CH
3
Pentobarbital
H
H
1. HO
H11002
, H
2
O
2. H
H11001
3. heat
CCH
3
COCH
2
CH
3
O
O
Ethyl 1-acetylcyclopentane-
carboxylate
CCH
3
H
O
Cyclopentyl methyl
ketone
H11001
NaOCH
2
CH
3
ethanol
CCH
3
O
COCH
2
CH
3
O
BrCH
2
CH
2
CH
2
CH
2
CHCCH
3
COCH
2
CH
3
O
O
CH
2
CH
2
Br
H
2
CC
H11002
H
2
C
CCH
3
O
COCH
2
CH
3
O
NaOCH
2
CH
3
CH
3
CCH
2
COCH
2
CH
3
O O
Ethyl acetoacetate
BrCH
2
CH
2
CH
2
CH
2
Br
1,4-Dibromobutane
Ethyl 1-acetylcyclopentane-
carboxylate
ESTER ENOLATES 581
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
21.11 The carbonyl oxygen at C-2 of pentobarbital is replaced by sulfur in Pentothal (thiopental).
The sodium salt of Pentothal is formed by removal of a proton from one of the N@H groups by
sodium hydroxide.
21.12 The synthesis of phenobarbital requires diethyl 2-phenylmalonate as the starting material.
Diethyl 2-phenylmalonate is prepared by a mixed Claisen condensation between ethyl phenyl-
acetate and diethyl carbonate.
21.13 Like diethyl malonate, ethyl acetoacetate undergoes Michael addition to an H9251, H9252-unsaturated
ketone.
NaOCH
2
CH
3
CH
3
CH
2
OH
H11001 CH
3
CCH
2
COCH
2
CH
3
O O
O
CHCOCH
2
CH
3
CH
3
O
C
O
O
H11001
NaOCH
2
CH
3
Ethyl phenylacetate
C
6
H
5
CH
2
COCH
2
CH
3
O
Diethyl carbonate
CH
3
CH
2
OCOCH
2
CH
3
O
Diethyl 2-phenylmalonate
C
6
H
5
CH(COOCH
2
CH
3
)
2
C
6
H
5
CH(COOCH
2
CH
3
)
2
Diethyl 2-phenylmalonate Phenobarbital
C
6
H
5
CH
3
CH
2
O
N
N
O
O
NaOCH
2
CH
3
CH
3
CH
2
Br
Diethyl
2-ethyl-2-phenylmalonate
C
6
H
5
C(COOCH
2
CH
3
)
2
CH
2
CH
3
H
2
NCNH
2
O
H
H
Pentothal sodium
CH
3
CH
2
CH
2
CH
CH
3
CH
2
O
N
N
O
S
CH
3
Na
H11001
H11002
CH
3
CH
2
CH
2
CH
CH
3
CH
2
O
N
N
O
S
H11002
CH
3
Na
H11001
H H
Pentobarbital; prepared from urea,
(H
2
N)
2
C O
CH
3
CH
2
CH
2
CH
CH
3
CH
2
O
N
N
H
H
O
O
CH
3
1
3
4
6
25
Pentothal; prepared from thiourea,
(H
2
N)
2
C S
CH
3
CH
2
CH
2
CH
CH
3
CH
2
O
N
N
H
H
O
S
CH
3
582 ESTER ENOLATES
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
Basic ester hydrolysis followed by acidification and decarboxylation gives the diketone 3-(2-
oxopropyl)cycloheptanone as the major product of the reaction sequence.
21.14 (b) The H9251-carbon atom of the ester bears a phenyl substituent and a methyl group. Only the
methyl group can be attached to the H9251 carbon by nucleophilic substitution. Therefore generate
the enolate of methyl phenylacetate with lithium diisopropylamide (LDA) in tetrahydrofuran
(THF) and then alkylate with methyl iodide.
(c) The desired product corresponds to an aldol addition product.
Therefore convert cyclohexanone to its enolate and then treat with benzaldehyde.
(d) This product corresponds to the addition of the enolate of tert-butyl acetate to cyclohexanone.
Generate the enolate of tert-butyl acetate with lithium diisopropylamide; then add cyclohexa-
none.
1. LDA, THF
2. cyclohexanone
3. H
3
O
H11001
CH
2
CO
2
C(CH
3
)
3
OH
tert-Butyl
(1-hydroxycyclohexyl)acetate
CH
3
CO
2
C(CH
3
)
3
tert-Butyl acetate
H11001O
O
CH
2
COC(CH
3
)
3
OH
H11002
CH
2
COC(CH
3
)
3
O
1. LDA, THF
2. C
6
H
5
CHO
3. H
3
O
H11001
O
Cyclohexanone
O
OH
CHC
6
H
5
1-(2-Oxocyclohexyl)-1-
phenylmethanol
O
OH
CHC
6
H
5
O
HCC
6
H
5
O
H11002
H11001
LDA
THF
CH
3
I
C
6
H
5
CHCO
2
CH
3
CH
3
Methyl
2-phenylpropanoate
C
6
H
5
CH
OCH
3
OLi
C
Enolate of methyl
phenylacetate
C
6
H
5
CH
2
CO
2
CH
3
Methyl phenylacetate
CHCOCH
2
CH
3
O
O
1. KOH, ethanol–water
2. H
H11001
3. heat
CH
2
CCH
3
O
O
3-(2-Oxopropyl)-
cycloheptanone (52%)CH
3
O
C
ESTER ENOLATES 583
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
21.15 To undergo a Claisen condensation, an ester must have at least two protons on the H9251 carbon:
The equilibrium constant for condensation is unfavorable unless the H9252-keto ester can be deproton-
ated to form a stable anion.
(a) Among the esters given, ethyl pentanoate and ethyl 3-methylbutanoate undergo the Claisen
condensation
(b) The Claisen condensation product of ethyl 2-methylbutanoate cannot be deprotonated; the
equilibrium constant for its formation is less than 1.
(c) Ethyl 2,2-dimethylpropanoate has no protons on its H9251 carbon; it cannot form the ester enolate
required in the first step of the Claisen condensation.
21.16 (a) The Claisen condensation of ethyl phenylacetate is given by the equation
1. NaOCH
2
CH
3
2. H
H11001
C
6
H
5
CH
2
COCH
2
CH
3
O
Ethyl phenylacetate
C
6
H
5
CH
2
CCHCOCH
2
CH
3
OO
C
6
H
5
Ethyl 3-oxo-2,4-diphenylbutanoate
H11002
OCH
2
CH
3
H
3
C
CH
3
CCOCH
2
CH
3
O
CH
3
C H11001 no reaction
Ethyl 2,2-
dimethylpropanoate
Ethyl 2-methylbutanoate
CH
3
CH
2
CHCOCH
2
CH
3
O
CH
3
No protons on H9251-carbon atom; cannot
form stabilized enolate by deprotonation
CH
3
CH
2
CHCCCOOCH
2
CH
3
O
CH
3
CH
2
CH
3
CH
3
NaOCH
2
CH
3
K H11021 1
1. NaOCH
2
CH
3
2. H
H11001
(CH
3
)
2
CHCH
2
COCH
2
CH
3
O
Ethyl 3-methylbutanoate
(CH
3
)
2
CHCH
2
CCHCOCH
2
CH
3
O O
CH(CH
3
)
2
Ethyl 2-isopropyl-5-methyl-
3-oxohexanoate
1. NaOCH
2
CH
3
2. H
H11001
CH
3
CH
2
CH
2
CH
2
CCHCOCH
2
CH
3
O
CH
2
CH
2
CH
3
O
Ethyl 3-oxo-2-propylheptanoate
CH
3
CH
2
CH
2
CH
2
COCH
2
CH
3
O
Ethyl pentanoate
NaOCH
2
CH
3
H110012RCH
2
COCH
2
CH
3
O
2CH
3
CH
2
OHNa
H11001
H11001RCH
2
CCCOCH
2
CH
3
R
O O
H11002
H9251
584 ESTER ENOLATES
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
(b) Saponification and decarboxylation of this H9252-keto ester gives dibenzyl ketone.
(c) This process illustrates the alkylation of a H9252-keto ester with subsequent saponification and
decarboxylation.
(d) The enolate ion of ethyl phenylacetate attacks the carbonyl carbon of ethyl benzoate.
(e) Saponification and decarboxylation yield benzyl phenyl ketone.
( f ) This sequence is analogous to that of part (c).
21.17 (a) The Dieckmann reaction is the intramolecular version of the Claisen condensation. It employs
a diester as starting material.
1. NaOCH
2
CH
3
2. H
H11001
Ethyl (2-oxocyclohexane)-
carboxylate
COCH
2
CH
3
O
O
Diethyl heptanedioate
CH
3
CH
2
OC(CH
2
)
5
COCH
2
CH
3
O O
C
6
H
5
CCHCOCH
2
CH
3
OO
C
6
H
5
NaOCH
2
CH
3
CHCH
2
BrH
2
C
C
6
H
5
CCCOOCH
2
CH
3
O
C
6
H
5
CH
2
CH CH
2
1. HO
H11002
, H
2
O
2. H
H11001
3. heat
1,2-Diphenyl-4-penten-1-one
C
6
H
5
CCHCH
2
CH
O
C
6
H
5
CH
2
1. HO
H11002
, H
2
O
2. H
H11001
3. heat
OO
C
6
H
5
C
6
H
5
CCHCOCH
2
CH
3
Ethyl
3-Oxo-2,3-diphenylpropanoate
O
C
6
H
5
CCH
2
C
6
H
5
Benzyl phenyl ketone
C
6
H
5
C
H11002
O
O
OCH
2
CH
3
C
6
H
5
CHCOCH
2
CH
3
OO
C
6
H
5
C
6
H
5
CCHCOCH
2
CH
3
Ethyl 2,3-diphenyl-
3-oxopropanoate
C
6
H
5
CH
2
CCHCOCH
2
CH
3
OO
C
6
H
5
Ethyl 3-oxo-2,4-
diphenylbutanoate
NaOCH
2
CH
3
CHCH
2
BrH
2
C
C
6
H
5
CH
2
CCCOOCH
2
CH
3
O
C
6
H
5
CH
2
CH CH
2
1. HO
H11002
, H
2
O
2. H
H11001
3. heat
C
6
H
5
CH
2
CCHCH
2
CH
O
C
6
H
5
1,3-Diphenyl-5-hexen-2-one
CH
2
1. HO
H11002
, H
2
O
2. H
H11001
3. heat
C
6
H
5
CH
2
CCH
2
C
6
H
5
O
Dibenzyl ketone
C
6
H
5
CH
2
CCHCOCH
2
CH
3
O O
C
6
H
5
Ethyl 3-oxo-2,4-
diphenylbutanoate
ESTER ENOLATES 585
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
(b) Acylation of cyclohexanone with diethyl carbonate yields the same H9252-keto ester formed in
part (a).
(c) The two most stable enol forms are those that involve the proton on the carbon flanked by the
two carbonyl groups.
(d) Deprotonation of the H9252-keto ester involves the acidic proton at the carbon flanked by the two
carbonyl groups
(e) The methyl group is introduced by alkylation of the H9252-keto ester. Saponification and decar-
boxylation complete the synthesis.
( f ) The enolate ion of the H9252-keto ester [see part (d)] undergoes Michael addition to the
carbon–carbon double bond of acrolein.
This reaction has been reported in the chemical literature and proceeds in 65–75% yield.
NaOCH
2
CH
3
CH
3
CH
2
OH
O
COCH
2
CH
3
O
Ethyl (2-oxocyclohexane)-
carboxylate
H
2
C CHCH
O
Acrolein
O
O
CH
2
CH
2
CH
COOCH
2
CH
3
Michael adduct
H11001
NaOCH
2
CH
3
CH
3
Br
1. HO
H11002
, H
2
O
O
COCH
2
CH
3
O
Ethyl (2-oxocyclohexane)-
carboxylate
O
CH
3
COOCH
2
CH
3
Ethyl (1-methyl-2-oxocyclohexane)-
carboxylate
O
CH
3
2-Methylcyclohexanone
2. H
H11001
3. heat
O
COCH
2
CH
3
O
H11002
O
COCH
2
CH
3
O
H11002
O
COCH
2
CH
3
OH11002
O
COCH
2
CH
3
O
H
O
COCH
2
CH
3
O
O
COCH
2
CH
3
O
H
1. NaOCH
2
CH
3
2. H
H11001
O
Diethyl carbonateCyclohexanone
CH
3
CH
2
OCOCH
2
CH
3
O
H11001
Ethyl (2-oxocyclohexane)-
carboxylate
COCH
2
CH
3
O
O
586 ESTER ENOLATES
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
21.18 (a) Ethyl acetoacetate is converted to its enolate ion with sodium ethoxide; this anion then acts as
a nucleophile toward 1-bromopentane.
(b) Saponification and decarboxylation of the product in part (a) yields 2-octanone.
(c) The product derived from the reaction in part (a) can be alkylated again:
(d) The dialkylated derivative of acetoacetic ester formed in part (c) can be converted to a ketone
by saponification and decarboxylation.
(e) The anion of ethyl acetoacetate acts as a nucleophile toward 1-bromo-3-chloropropane.
Bromide is a better leaving group than chloride and is displaced preferentially.
1-Bromo-3-
chloropropane
Ethyl acetoacetate
H11001 BrCH
2
CH
2
CH
2
Cl
Ethyl
2-acetyl-5-chloropentanoate
O
CH
3
CCH
2
COCH
2
CH
3
O
NaOCH
2
CH
3
CH
3
CCHCOCH
2
CH
3
CH
2
CH
2
CH
2
Cl
O O
Ethyl
2-acetyl-2-methylheptanoate
CH
3
CCCOOCH
2
CH
3
CH
2
CH
2
CH
2
CH
2
CH
3
OCH
3
3-Methyl-2-octanone
CH
3
CCHCH
3
CH
2
CH
2
CH
2
CH
2
CH
3
O
1. HO
H11002
, H
2
O
2. H
H11001
3. heat
Ethyl
2-acetyl-2-methylheptanoate
NaOCH
2
CH
3
CH
3
CCCOOCH
2
CH
3
CH
2
CH
2
CH
2
CH
2
CH
3
OCH
3
Ethyl
2-acetylheptanoate
CH
3
CCHCOCH
2
CH
3
CH
2
CH
2
CH
2
CH
2
CH
3
O O
H11001 CH
3
I
Ethyl
2-acetylheptanoate
2-Octanone
CH
3
CCH
2
CH
2
CH
2
CH
2
CH
2
CH
3
OO
CH
3
CCHCOCH
2
CH
3
O
(CH
2
)
4
CH
3
1. HO
H11002
, H
2
O
2. H
H11001
3. heat
O
1-BromopentaneEthyl acetoacetate
H11001CH
3
CCH
2
COCH
2
CH
3
CH
3
CH
2
CH
2
CH
2
CH
2
Br
Ethyl 2-acetylheptanoate
O
NaOCH
2
CH
3
CH
3
CCHCOCH
2
CH
3
CH
2
CH
2
CH
2
CH
2
CH
3
O O
ESTER ENOLATES 587
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
( f ) Treatment of the product of part (e) with sodium ethoxide gives an enolate ion that cyclizes by
intramolecular nucleophilic substitution of chloride.
(g) Cyclobutyl methyl ketone is formed by saponification and decarboxylation of the product in
part ( f ).
(h) Ethyl acetoacetate undergoes Michael addition to phenyl vinyl ketone in the presence of base.
(i) A diketone results from saponification and decarboxylation of the Michael adduct.
21.19 Diethyl malonate reacts with the reagents given in the preceding problem in a manner analogous to
that of ethyl acetoacetate.
(a)
(b)
Heptanoic acidDiethyl 1,1-hexanedicarboxylate
CH
3
CH
2
CH
2
CH
2
CH
2
CH(COOCH
2
CH
3
)
2
1. HO
H11002
, H
2
O
2. H
H11001
3. heat
CH
3
CH
2
CH
2
CH
2
CH
2
CH
2
COH
O
1-BromopentaneDiethyl malonate
H11001CH
2
(COOCH
2
CH
3
)
2
CH
3
CH
2
CH
2
CH
2
CH
2
Br
Diethyl 1,1-hexanedicarboxylate
(diethyl pentylmalonate)
NaOCH
2
CH
3
CH
3
CH
2
CH
2
CH
2
CH
2
CH(COOCH
2
CH
3
)
2
Ethyl 2-acetyl-5-oxo-5-
phenylpentanoate
CH
3
CCHCOCH
2
CH
3
CH
2
CH
2
CC
6
H
5
O O
O
1-Phenyl-1,5-hexanedione
CH
3
CCH
2
CH
2
CH
2
CC
6
H
5
O O
1. HO
H11002
, H
2
O
2. H
H11001
3. heat
H11001
Phenyl vinyl ketoneEthyl acetoacetate
O
CH
3
CCH
2
COCH
2
CH
3
O
H
2
C CHCC
6
H
5
O
NaOCH
2
CH
3
ethanol
Ethyl 2-acetyl-5-
oxo-5-phenylpentanoate
CH
3
CCHCOCH
2
CH
3
CH
2
CH
2
CC
6
H
5
O O
O
Ethyl
1-acetylcyclobutanecarboxylate
O
CH
3
C
O
COCH
2
CH
3
Cyclobutyl methyl
ketone
O
CH
3
C
1. HO
H11002
, H
2
O
2. H
H11001
3. heat
Ethyl
1-acetylcyclobutanecarboxylate
Ethyl
2-acetyl-5-chloropentanoate
NaOCH
2
CH
3
CH
3
CCHCOCH
2
CH
3
CH
2
CH
2
CH
2
Cl
O O
O
CH
3
C
O
COCH
2
CH
3
588 ESTER ENOLATES
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
(c)
(d)
(e)
( f )
(g)
(h)
(i)
5-Oxo-5-phenylpentanoic acidDiethyl 4-oxo-4-phenylbutane-
1,1-dicarboxylate
C
6
H
5
CCH
2
CH
2
CH
2
COH
O O
C
6
H
5
CCH
2
CH
2
CH(COOCH
2
CH
3
)
2
O
1. HO
H11002
, H
2
O
2. H
H11001
3. heat
Diethyl malonate
CH
2
(COOCH
2
CH
3
)
2
Phenyl vinyl ketone Diethyl 4-oxo-4-phenylbutane-
1,1-dicarboxylate
H11001
NaOCH
2
CH
3
CH
3
CH
2
OH
C
6
H
5
CCH CH
2
O
C
6
H
5
CCH
2
CH
2
CH(COOCH
2
CH
3
)
2
O
Diethyl
cyclobutane-1,1-dicarboxylate
O
O
COCH
2
CH
3
COCH
2
CH
3
1. HO
H11002
, H
2
O
2. H
H11001
3. heat
Cyclobutanecarboxylic
acid
O
COH
Diethyl 4-chloro-1,1-butanedicarboxylate
ClCH
2
CH
2
CH
2
CH(COOCH
2
CH
3
)
2
NaOCH
2
CH
3
Diethyl
cyclobutane-1,1-dicarboxylate
O
O
COCH
2
CH
3
COCH
2
CH
3
Diethyl malonate
CH
2
(COOCH
2
CH
3
)
2
1-Bromo-3-chloropropane
BrCH
2
CH
2
CH
2
Cl
Diethyl 4-chloro-1,1-
butanedicarboxylate
ClCH
2
CH
2
CH
2
CH(COOCH
2
CH
3
)
2
H11001
NaOCH
2
CH
3
1. HO
H11002
, H
2
O
2. H
H11001
3. heat
Diethyl 2,2-heptanedicarboxylate
CH
3
CH
2
CH
2
CH
2
CH
2
C(COOCH
2
CH
3
)
2
CH
3
2-Methylheptanoic acid
CH
3
CH
2
CH
2
CH
2
CH
2
CHCOH
O
CH
3
Diethyl 2,2-heptanedicarboxylateDiethyl 1,1-hexanedicarboxylate
CH
3
CH
2
CH
2
CH
2
CH
2
CH(COOCH
2
CH
3
)
2
NaOCH
2
CH
3
CH
3
I
CH
3
CH
2
CH
2
CH
2
CH
2
C(COOCH
2
CH
3
)
2
CH
3
ESTER ENOLATES 589
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
21.20 (a) Both carbonyl groups of diethyl malonate are equivalent, and so enolization can occur in either
direction.
(b) Ethyl acetoacetate can give three constitutionally isomeric enols:
(c) Bromine reacts with diethyl malonate and ethyl acetoacetate by way of the corresponding
enols:
Br
2
Ethyl acetoacetate
CH
3
CCH
2
COCH
2
CH
3
O O
Ethyl H9251-bromoacetoacetate
CH
3
CCHCOCH
2
CH
3
Br
O
O
H
OCH
2
CH
3
CH
O
C
O
C
H
3
C
OCH
2
CH
3
H
CHCH
3
CH
2
O
O
C
O
C
CH
2
(COOCH
2
CH
3
)
2
Diethyl malonate
Br
2
Diethyl bromomalonate
CH
3
CH
2
OCCHCOCH
2
CH
3
Br
O O
Least stable enol; double bond not
conjugated with carbonyl group
OCH
2
CH
3
H
CH
2
H
2
C
O
C
O
C
CH
3
CCH
2
COCH
2
CH
3
O O
Ethyl acetoacetate Enol stable but lacking ester
resonance
OCH
2
CH
3
CH
O
C
O
C
H
H
3
C
Most stable enol; double bond
conjugated with carbonyl group;
ester carbonyl stabilized by
resonance
H
OCH
2
CH
3
CH
O
C
O
C
H
3
C
Diethyl malonate
OCH
2
CH
3
H
CHCH
3
CH
2
O
O
C
O
C
OCH
2
CH
3
CH
2
CH
3
CH
2
O
O
CC
O
C
OCH
2
CH
3
CHCH
3
CH
2
O
O
C
O
H
590 ESTER ENOLATES
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
21.21 (a) Recall that Grignard reagents are destroyed by reaction with proton donors. Ethyl acetoacetate
is a stronger acid than water; it transfers a proton to a Grignard reagent.
(b) Adding D
2
O and DCl to the reaction mixture leads to D
H11001
transfer to the H9251-carbon atom of
ethyl acetoacetate.
21.22 (a) Ethyl octanoate undergoes a Claisen condensation to form a H9252-keto ester on being treated with
sodium ethoxide.
(b) Saponification and decarboxylation of the H9252-keto ester yields a ketone.
(c) On treatment with base, ethyl acetoacetate is converted to its enolate, which reacts as a nucle-
ophile toward 1-bromobutane.
(d) Alkylation of ethyl acetoacetate, followed by saponification and decarboxylation, gives a
ketone. The two steps constitute the acetoacetic ester synthesis.
2-Heptanone
CH
3
CCH
2
CH
2
CH
2
CH
2
CH
3
O
1. NaOH, H
2
O
2. H
H11001
3. heat
Ethyl 2-acetylhexanoate
CH
3
CCHCOCH
2
CH
3
CH
2
CH
2
CH
2
CH
3
O O
Ethyl acetoacetate
CH
3
CCH
2
COCH
2
CH
3
O O
1-Bromobutane
CH
3
CH
2
CH
2
CH
2
BrH11001
NaOCH
2
CH
3
ethanol
Ethyl 2-acetylhexanoate
CH
3
CCHCOCH
2
CH
3
CH
2
CH
2
CH
2
CH
3
O O
2. H
H11001
3. heat
1. NaOH, H
2
O
8-Pentadecanone
CH
3
(CH
2
)
5
CH
2
CCH
2
(CH
2
)
5
CH
3
O
Ethyl 2-hexyl-3-oxodecanoate
CH
3
(CH
2
)
5
CH
2
CCHCOCH
2
CH
3
O O
(CH
2
)
5
CH
3
Ethyl octanoate
CH
3
(CH
2
)
5
CH
2
COCH
2
CH
3
O
2. H
H11001
1. NaOCH
2
CH
3
Ethyl 2-hexyl-3-oxodecanoate
CH
3
(CH
2
)
5
CH
2
CCHCOCH
2
CH
3
O O
(CH
2
)
5
CH
3
H11001
Deuterium
oxide
D
2
O
Iodomagnesium salt
of ethyl acetoacetate
CH
3
CCHCOCH
2
CH
3
O O
MgI
Ethyl
H9251-deuterioacetoacetate
O
CH
3
CCHCOCH
2
CH
3
O
D
DCl
Methylmagnesium
iodide
Ethyl acetoacetate
H11001 CH
3
MgI
Methane
H11001CH
4
Iodomagnesium salt of
ethyl acetoacetate
CH
3
CCH
2
COCH
2
CH
3
O O
CH
3
CCHCOCH
2
CH
3
O O
MgI
ESTER ENOLATES 591
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
(e) An alkylated derivative of ethyl acetoacetate is capable of being alkylated a second time.
( f ) The dialkylated derivative of acetoacetic ester formed in part (e) is converted to a ketone by
saponification and decarboxylation.
(g) The enolate of acetophenone attacks the carbonyl group of diethyl carbonate.
(h) Diethyl oxalate acts as an acylating agent toward the enolate of acetone.
(i) The first stage of the malonic ester synthesis is the alkylation of diethyl malonate with an alkyl
halide.
( j) Alkylation of diethyl malonate is followed by saponification and decarboxylation to give a
carboxylic acid.
(k) The anion of diethyl malonate undergoes Michael addition to 6-methyl-2-cyclohexenone.
CH
2
(COOCH
2
CH
3
)
2
NaOCH
2
CH
3
ethanol
H11001
O
H
3
C
O
H
3
C
CH(COOCH
2
CH
3
)
2
Diethyl malonate 6-Methyl-2-
cyclohexenone
Diethyl 2-(4-methyl-3-oxocyclohexyl)malonate
(isolated yield, 50%)
CH
3
CH
2
CHCH
2
CH(COOCH
2
CH
3
)
2
Diethyl 3-methylpentane-1,1-dicarboxylate 4-Methylhexanoic acid
(57% yield from 1-bromo-2-methylbutane)
CH
3
CH
3
CH
2
CHCH
2
CH
2
COH
CH
3
1. NaOH, H
2
O
2. H
H11001
3. heat
O
C
CH
2
(COOCH
2
CH
3
)
2
CH
3
CH
2
CHCH
2
CH(COOCH
2
CH
3
)
2
BrCH
2
CHCH
2
CH
3
H11001
NaOCH
2
CH
3
ethanol
Diethyl malonate 1-Bromo-2-methylbutane Diethyl 3-methylpentane-1,1-dicarboxylate
CH
3
CH
3
Ethyl 2,4-dioxopentanoate
CH
3
CCH
2
CCOCH
2
CH
3
O OO
Diethyl oxalate
CH
3
CH
2
OCCOCH
2
CH
3
OO
Acetone
CH
3
CCH
3
O
H11001
1. NaOCH
2
CH
3
2. H
H11001
3-Oxo-3-phenylpropanoate
C
6
H
5
CCH
2
COCH
2
CH
3
O O
Diethyl carbonate
CH
3
CH
2
OCOCH
2
CH
3
O
Acetophenone
C
6
H
5
CCH
3
O
H11001
1. NaOCH
2
CH
3
2. H
H11001
3-Butyl-2-heptanone
CH
3
CCH(CH
2
CH
2
CH
2
CH
3
)
2
O
Ethyl 2-acetyl-2-butylhexanoate
CH
3
CC(CH
2
CH
2
CH
2
CH
3
)
2
COOCH
2
CH
3
O
1. NaOH
2. H
H11001
3. heat
1-Iodobutane
CH
3
CH
2
CH
2
CH
2
IH11001
NaOCH
2
CH
3
ethanol
Ethyl 2-acetylhexanoate
CH
3
CCHCOCH
2
CH
3
CH
2
CH
2
CH
2
CH
3
O O
Ethyl 2-acetyl-2-butylhexanoate
CH
3
CC(CH
2
CH
2
CH
2
CH
3
)
2
COOCH
2
CH
3
O
592 ESTER ENOLATES
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
(l) Acid hydrolysis converts the diester in part (k) to a malonic acid derivative, which then
undergoes decarboxylation.
(m) Lithium diisopropylamide (LDA) is used to convert esters quantitatively to their enolate ions.
In this reaction the enolate of tert-butyl acetate adds to benzaldehyde.
21.23 (a) Both ester functions in this molecule are H9252 to a ketone carbonyl. Hydrolysis is followed by
decarboxylation.
(b) Examine each carbon that is H9251 to an ester function to see if it can lead to a five-, six-, or seven-
membered cyclic H9252-keto ester by a Dieckmann cyclization.
H11002
COOCH
2
CH
3
COOCH
2
CH
3
COOCH
2
CH
3
Cyclization gives a five-membered ring;
H9252-keto ester deprotonated under
reaction conditions; this is the
observed product (C
12
H
18
O
5
).
O
H
3
C
COOCH
2
CH
3
COOCH
2
CH
3
H11002
COOCH
2
CH
3
COOCH
2
CH
3
COOCH
2
CH
3
Cyclization not likely; resulting ring is
four-membered and highly strained.
H11002
COOCH
2
CH
3
COOCH
2
CH
3
COOCH
2
CH
3
O
H
3
C
COOCH
2
CH
3
CH
3
CH
2
OOC
Cyclization to a five-membered ring
possible, but H9252-keto ester cannot be
deprotonated to give a stable anion.
H
2
O, H
2
SO
4
heat
O
CH
3
CH
2
COOCH
2
CH
3
COOCH
2
CH
3
O
CH
3
CH
2
Diethyl
3-ethylcyclopentanone-2,5-dicarboxylate
3-Ethylcyclopentanone
(C
7
H
12
O)
CH
3
COC(CH
3
)
3
C
6
H
5
CHCH
2
COC(CH
3
)
3
OH
O O
LDA
1. C
6
H
5
CH
2. H
H11001
OC(CH
3
)
3
OLi
H
2
C C
O
tert-Butyl acetate Lithium enolate of
tert-butyl acetate
tert-Butyl 3-hydroxy-3-
phenylpropanoate
O
H
3
C
CH
2
COOH
(4-Methyl-3-oxocyclohexyl)acetic acid
(isolated yield, 80%)
O
H
3
C
CH(COOCH
2
CH
3
)
2
Diethyl 2-(4-methyl-3-oxocyclohexyl)malonate
H
2
O, HCl
heat
ESTER ENOLATES 593
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
(c) Both ester function undergo hydrolysis in acid, but decarboxylation occurs only at the
carboxyl group that is H9252 to the ketone carbonyl.
(d) A Dieckmann cyclization occurs, giving a five-membered ring fused to the original three-
membered ring.
(e) Saponification and decarboxylation convert the H9252-keto ester to a ketone.
21.24 The heart of the preparation of capsaicin is a malonic ester synthesis. The first step is bromination
of the primary alcohol by phosphorous tribromide. The resulting primary alkyl bromide is used to
alkylate the sodium salt of diethyl malonate. A substituted malonic acid derivative is obtained
following basic hydrolysis of the ester groups.
Malonic acid derivatives undergo decarboxylation on heating.
heat
160–180H11034C
COH
O
C
10
H
18
O
2
COH
O
O
COH
OH
PBr
3
1. NaCH(CO
2
CH
2
CH
3
)
2
2. KOH, H
2
O, heat
3. H
H11001
Br
C
8
H
15
Br
COH
O
O
COH
C
11
H
18
O
4
1. HO
H11002
, H
2
O
2. H
H11001
3. heat
O
H
H
Bicyclo[3.1.0]hexan-3-one
(C
6
H
8
O, 43%)
COOCH
2
CH
3
O
H
H
Ethyl bicyclo[3.1.0]hexan-3-
one-2-carboxylate
1. NaOCH
2
CH
3
2. H
H11001
CH
2
COOCH
2
CH
3
CH
2
COOCH
2
CH
3
H
H
Diethyl cis-1,2-
cyclopropanediacetate
COOCH
2
CH
3
H
H
O
Ethyl bicyclo[3.1.0]-
hexan-3-one-2-carboxylate
(C
9
H
12
O
3
, 79%)
Diethyl 2-methylcyclopentanone-
3,5-dicarboxylate
O
COOCH
2
CH
3
COOCH
2
CH
3
H
3
C
O
CO
2
H
CO
2
HH
3
C
2-Methylcyclopentanone-3-
carboxylic acid (C
7
H
10
O
3
)
O
CO
2
HH
3
C
H
3
O
H11001
heat
594 ESTER ENOLATES
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
Formation of the amide completes the synthesis of capsaicin.
21.25 (a) First write out the structure of 4-phenyl-2-butanone and identify the synthon that is derived
from ethyl acetoacetate.
Therefore carry out the acetoacetic ester synthesis using a benzyl halide as the alkylating
agent.
(b) Identify the synthon in 3-phenylpropanoic acid that is derived from malonic ester by discon-
necting the molecule at its H9251-carbon atom.
Here, as in part (a), a benzyl halide is the required alkylating agent.
CH
2
(COOCH
2
CH
3
)
2
NaOCH
2
CH
3
ethanol
Benzyl bromideDiethyl malonate Diethyl benzylmalonate 3-Phenylpropanoic acid
1. HO
H11002
, H
2
O
2. H
H11001
3. heat
C
6
H
5
CH
2
Br C
6
H
5
CH
2
CH(COOCH
2
CH
3
)
2
C
6
H
5
CH
2
CH
2
COOHH11001
C
6
H
5
CH
2
CH
2
COH
O
C
6
H
5
CH
2
X CH
2
COH
O
H11001
H11002
CH
3
CCH
2
COCH
2
CH
3
C
6
H
5
CH
2
Br
NaOCH
2
CH
3
ethanol
CH
3
CCHCOCH
2
CH
3
OOO O
CH
2
C
6
H
5
Ethyl acetoacetate Benzyl bromide
CH
3
CCH
2
CH
2
C
6
H
5
O
4-Phenyl-2-butanone
1. HO
H11002
, H
2
O
2. H
H11001
3. heat
H11001
Ethyl 2-benzyl-3-
oxobutanoate
C
6
H
5
CH
2
OH C
6
H
5
CH
2
Br
HBr
or PBr
3
Benzyl alcohol Benzyl bromide
C
6
H
5
CH
2
C
6
H
5
CH
2
XCH
2
CCH
3
O
CH
2
CCH
3
O
H11001
H11002
SOCl
2
COH
O
CCl
O
CNHCH
2
OCH
3
OH
O
HO CH
2
NH
2
CH
3
O
Capsaicin (C
18
H
27
NO
3
)
ESTER ENOLATES 595
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
(c) In this synthesis the desired 1,3-diol function can be derived by reduction of a malonic ester
derivative. First propene must be converted to an allyl halide for use as an alkylating agent.
(d) The desired primary alcohol may be prepared by reduction of the corresponding carboxylic
acid, which in turn is available from the malonic ester synthesis using allyl chloride, includ-
ing saponification and decarboxylation of the diester [prepared in part (c)].
The correct sequence of reactions is
(e) The desired product is an alcohol. It can be prepared by reduction of a ketone, which in turn
can be prepared by the acetoacetic ester synthesis.
Therefore
1. HO
H11002
, H
2
O
CH
2
O
CH
3
CCH
2
CH
2
CH
NaBH
4
CH
3
OH
CH
2
OH
CH
3
CHCH
2
CH
2
CH
5-Hexen-2-ol
H11001
CH
2
CH
2
CH
CH
3
CCHCOCH
2
CH
3
O O
NaOCH
2
CH
3
ethanol
CHCH
2
ClH
2
C
Allyl chloride
CH
3
CCH
2
COCH
2
CH
3
O O
Ethyl acetoacetate
2. H
H11001
3. heat
CHCH
2
CH
2
CHCH
3
OH
H
2
C
O
CHCH
2
CH
2
CCH
3
H
2
C H11001CHCH
2
XH
2
C
O
CH
2
CCH
3
H11002
CHCH
2
CH(COOCH
2
CH
3
)
2
H
2
C
Diethyl 2-allylmalonate
[prepared as in part (c)]
CHCH
2
CH
2
COOHH
2
C
4-Pentenoic acid
CHCH
2
CH
2
CH
2
OHH
2
C
4-Penten-1-ol
1. HO
H11002
, H
2
O
2. H
H11001
3. heat
1. LiAlH
4
2. H
2
O
CHCH
2
CH
2
CH
2
OHH
2
C CHCH
2
CH
2
CO
2
HH
2
C CHCH
2
CH(CO
2
CH
2
CH
3
)
2
H
2
C
4-Penten-1-ol
NaOCH
2
CH
3
ethanol
CHCH
2
ClH
2
C
Allyl chloride
H11001CH
2
(COOCH
2
CH
3
)
2
Diethyl malonate
CHCH
2
CH(COOCH
2
CH
3
)
2
H
2
C
Diethyl 2-allylmalonate
CHCH
2
CH(CH
2
OH)
2
H
2
C
2-Allyl-1,3-propanediol
1. LiAlH
4
2. H
2
O
Cl
2
heat
CHCH
3
H
2
C
Propene
CHCH
2
ClH
2
C
Allyl chloride
CHCH
2
CH(CH
2
OH)
2
H
2
C CHCH
2
XH
2
C H11001 CH(COOCH
2
CH
3
)
2
H11002
596 ESTER ENOLATES
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
( f ) Cyclopropanecarboxylic acid may be prepared by a malonic ester synthesis, as retrosynthetic
analysis shows.
The desired reaction sequence is
(g) Treatment of the diester formed in part ( f ) with ammonia gives a diamide.
(h) We need to extend the carbon chain of the starting material by four carbons. One way to
accomplish this is by way of a malonic ester synthesis at each end of the chain.
21.26 The problem states that diphenadione is prepared from 1,1-diphenylacetone and dimethyl 1,2-
benzenedicarboxylate. Therefore, disconnect the molecule in a way that reveals the two reactants.
and CH
3
CCH(C
6
H
5
)
2
O
CX
CX
O
O
CCH(C
6
H
5
)
2
O
O
O
Diphenadione
H11001
NaOCH
2
CH
3
2CH
2
(COOCH
2
CH
3
)
2
Diethyl malonate
Br(CH
2
)
8
Br
1,8-Dibromooctane
(CH
3
CH
2
OOC)
2
CH(CH
2
)
8
CH(COOCH
2
CH
3
)
2
1. HO
H11002
, H
2
O
2. H
H11001
3. heat
HOCCH
2
(CH
2
)
8
CH
2
COH
O O
Dodecanedioic acid
1. LiAlH
4
2. H
2
O
Octanedioic acid
HOC(CH
2
)
6
COH
O O
HOCH
2
(CH
2
)
6
CH
2
OH
1,8-Dibromooctane
BrCH
2
(CH
2
)
6
CH
2
Br
HBr
or PBr
3
NH
3
COCH
2
CH
3
COCH
2
CH
3
O
O
Diethyl cyclopropane-
1,1-dicarboxylate
[prepared as in part ( f )]
CNH
2
CNH
2
O
O
Cyclopropane-
1,1-dicarboxamide
H11001
COOCH
2
CH
3
COOCH
2
CH
3
NaOCH
2
CH
3
ethanol
1. HO
H11002
, H
2
O
2. H
H11001
3. heat
CH
2
(COOCH
2
CH
3
)
2
Diethyl malonate
BrCH
2
CH
2
Br
1,2-Dibromoethane
COH
O
Cyclopropane-
carboxylic acid
CH
2
(CO
2
CH
2
CH
3
)
2
H11001
CH
2
X
CH
2
X
CO
2
H
CO
2
CH
2
CH
3
CO
2
CH
2
CH
3
ESTER ENOLATES 597
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
Thus all that is required is to treat dimethyl 1,2-benzenedicarboxylate and 1,1-diphenylacetone with
base. Two successive acylations of a ketone enolate occur; the first is intermolecular, the second
intramolecular.
21.27 Esters react with amines to give amides. Each nitrogen of 1,2-diphenylhydrazine reacts with a
separate ester function of diethyl 2-butylmalonate.
21.28 Styrene oxide will be attacked by the anion of diethyl malonate at its less hindered ring position.
The product is 4-phenylbutanolide. It has been prepared in 72% yield by this procedure.
1. HO
H11002
, H
2
O
2. H
H11001
3. heat
C
6
H
5
COOCH
2
CH
3
O
O
C
6
H
5
O
O
O
C
6
H
5
CH(COOCH
2
CH
3
)
2
H11002
C
6
H
5
CH CH
2
COCH
2
CH
3
O
CH
C
O
OCH
2
CH
3
O
H11002
H11001
COCH
2
CH
3
CH
3
CH
2
CH
2
CH
2
CH
COCH
2
CH
3
O
O
Diethyl 2-butylmalonate
C
6
H
5
C
6
H
5
N
H
H
N
1,2-Diphenylhydrazine
CH
3
CH
2
CH
2
CH
2
C
6
H
5
C
6
H
5
O
O
N
N
Phenylbutazone (C
19
H
20
N
2
O
2
)
H11001 CH
3
CCH(C
6
H
5
)
2
O
COCH
3
COCH
3
O
O
NaOCH
3
ethanol
CCH(C
6
H
5
)
2
O
O
O
Diphenadione
CCH
2
CCH(C
6
H
5
)
2
COCH
3
O O
O
H9252-Diketone; not isolated1,1-DiphenylacetoneDimethyl 1,2-benzene-
dicarboxylate
1. NaOCH
3
2. H
H11001
598 ESTER ENOLATES
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
21.29 The first task is to convert acetic acid to ethyl chloroacetate.
Chlorination must precede esterification, because the Hell–Volhard–Zelinsky reaction requires a
carboxylic acid, not an ester, as the starting material. The remaining step is a nucleophilic substitu-
tion reaction.
21.30 From the hint given in the problem, it can be seen that synthesis of 2-methyl-2-propyl-1,3-propane-
diol is required. This diol is obtained by a sequence involving dialkylation of diethyl malonate.
Begin the synthesis by dialkylation of diethyl malonate.
Convert the ester functions to primary alcohols by reduction.
Conversion of the primary alcohol groups to carbamate esters completes the synthesis.
21.31 The compound given in the problem contains three functionalities that can undergo acid-catalyzed
hydrolysis: an acetal and two equivalent ester groups. Hydrolysis yields 3-oxo-1,1-cyclobutane-
dicarboxylic acid and 2 moles each of methanol and 2-propanol. The hydrolysis product is a malonic
C
CH
2
OH
CH
2
OH
CH
3
CH
2
CH
2
H
3
C
2-Methyl-2-propyl-1,3-propanediol
1. COCl
2
2. NH
3
, H
2
O
Meprobamate
C
CH
2
OCNH
2
CH
2
OCNH
2
CH
3
CH
2
CH
2
H
3
C
O
O
C
COOCH
2
CH
3
COOCH
2
CH
3
CH
3
CH
2
CH
2
H
3
C
Diethyl 2-methyl-2-propylmalonate
C
CH
2
OH
CH
2
OH
CH
3
CH
2
CH
2
H
3
C
2-Methyl-2-propyl-1,3-propanediol
1. LiAlH
4
2. H
2
O
NaOCH
2
CH
3
1. CH
3
CH
2
CH
2
Br,
2. CH
3
Br, NaOCH
2
CH
3
C
COOCH
2
CH
3
COOCH
2
CH
3
CH
3
CH
2
CH
2
H
3
C
Diethyl 2-methyl-2-propylmalonate
CH
2
(COOCH
2
CH
3
)
2
Diethyl malonate
CH
3
CH
2
CH
2
CH
2
OCNH
2
O
O
CH
2
OCNH
2
H
3
C
C
CH
3
CH
2
CH
2
CO
2
CH
2
CH
3
CO
2
CH
2
CH
3
H
3
C
C
CH
3
CH
2
CH
2
CH
2
OH
CH
2
OHH
3
C
C
NaCN
ClCH
2
COCH
2
CH
3
O
Ethyl chloroacetate Ethyl cyanoacetate
CCH
2
COCH
2
CH
3
N
O
Cl
2
P
CH
3
CH
2
OH
H
H11001
CH
3
COH
O
Acetic acid
ClCH
2
COH
O
Chloroacetic
acid
ClCH
2
COCH
2
CH
3
O
Ethyl chloroacetate
ESTER ENOLATES 599
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
acid derivative that decarboxylates on heating. The final product of the reaction is 3-oxocyclobu-
tanecarboxylic acid (C
5
H
6
O
3
).
SELF-TEST
PART A
A-1. Give the structure of the reactant, reagent, or product omitted from each of the following:
1. NaOCH
2
CH
3
2. C
6
H
5
CH
2
Br
?CH
3
CCH
2
COCH
2
CH
3
OO
(e)
NaOCH
2
CH
3
ethanol
?H11001(CH
3
CH
2
OOC)
2
CH
2
H
2
C CHCOCH
2
CH
3
O
(d)
Cl
COCH
2
CH
3
COCH
2
CH
3
? (two isomeric products; C
5
H
7
ClO
2
)
O
O
1. HO
H11002
, H
2
O
2. H
3
O
H11001
3. heat
(c)
1. NaOCH
2
CH
3
2. H
3
O
H11001
?H11001HCOCH
2
CH
3
(b)
O O
C
6
H
5
CHCOCH
2
CH
3
C
HO
1. NaOCH
2
CH
3
2. H
3
O
H11001
?CH
3
CH
2
CH
2
COCH
2
CH
3
(a)
O
HCl, H
2
O
heat
heat
H11001H110012CH
3
OH
Methanol
OH
2CH
3
CHCH
3
2-Propanol
COH
COH
O
O
O
3-Oxo-1,1-cyclobutanedicarboxylic
acid
H11001COH
O
O
3-Oxocyclobutanecarboxylic
acid
CO
2
Carbon
dioxide
COCH(CH
3
)
2
COCH(CH
3
)
2
CH
3
O
CH
3
O
O
O
Diisopropyl 3,3-dimethoxycyclobutane-
1,1-dicarboxylate
600 ESTER ENOLATES
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
A-2. Provide the correct structures of compounds A through E in the following reaction sequences:
(a)
(b)
A-3. Give a series of steps that will enable preparation of each of the following compounds from
the starting material(s) given and any other necessary reagents:
(a)
(b)
A-4. Write a stepwise mechanism for the reaction of ethyl propanoate with sodium ethoxide in
ethanol.
A-5. Ethyl 2-methylpropanoate does not undergo a Claisen condensation, whereas ethyl
3-methylbutanoate does. Provide a mechanistic explanation for this observation.
PART B
B-1. Which of the following compounds is the strongest acid?
(a) HCO
2
CH
2
CH
3
(b)CH
3
CH
2
O
2
CCH
2
CO
2
CH
2
CH
3
(c)CH
3
CH
2
O
2
CCH
2
CH
2
CO
2
CH
2
CH
3
(d)CH
3
CO
2
CH
2
CH
3
B-2. Which of the following will yield a ketone and carbon dioxide following saponification,
acidification, and heating?
(a)(c)
(b)(d) CH
3
CH
2
CHCCH
3
O
COCH
2
CH
3
O
CH
3
CH
2
CHCOCH
2
CH
3
O
COCH
2
CH
3
O
CH
3
CH
2
CHCCH
3
O
CCH
2
CH
3
O
CH
3
CH
2
CHCH
2
CCH
3
O
O
COCH
2
CH
3
and diethyl carbonatefrom C
6
H
5
CCH
3
O
C
6
H
5
CCH
2
CH
2
CH
2
CCH
3
OO
CH
3
CCH
2
CH
2
COH from ethyl acetoacetate
OO
1. NaOCH
2
CH
3
2. H
3
O
H11001
DEH11001 CO
2
1. HO
H11002
, H
2
O
2. H
3
O
H11001
3. heat
CH
3
CH
2
CH
2
COCH
2
CH
3
O
COCH
2
CH
3
O O
1. NaOCH
2
CH
3
2. H
3
O
H11001
1. NaOCH
2
CH
3
2. CH
3
CH
2
I
ABC
1. HO
H11002
, H
2
O
2. H
3
O
H11001
3. heat
CO
2
H11001 ?
CO
2
H
CH
3
CCHCH
2
CO
2
H
O
heat
(g)
Product of part (e)C
6
H
5
CH
2
CH
2
CCH
3
O
?
( f )
ESTER ENOLATES 601
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
B-3. Which of the following keto esters is not likely to have been prepared by a Claisen
condensation?
(a)(c)
(b)(d)
B-4. Dieckmann cyclization of will yield
(a)(c)
(b)(d)
B-5. What is the final product of this sequence?
(a)(c)
(b)(d)
CH
CH CH
2
O
O
O
O
CH
2
COCH
2
CH
3
CH
2
COCH
2
CH
3
O
O
NaOCH
2
CH
3
CH
3
CH
2
OH
1. HO
H11002
, H
2
O
2. H
H11001
3. heat
O
COCH
2
CH
3
O
O
COCH
2
CH
3
O
O
COCH
2
CH
3
COCH
2
CH
3
O
O
COCH
2
CH
3
CH
3
CH
2
OC(CH
2
)
5
COCH
2
CH
3
O O
CH(CH
3
)
2
(CH
3
)
2
CHCH
2
CCHCOCH
2
CH
3
O O
C
6
H
5
CCHCOCH
2
CH
3
O O
CH
3
(CH
3
)
2
CHCC(CH
3
)
2
O
COCH
2
CH
3
O
CH
3
CH
2
CCHCOCH
2
CH
3
O O
CH
3
602 ESTER ENOLATES
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website
B-6. What is the final product of the following sequence of reactions?
(a)(c)
(b)
(d)
B-7. Which of the following would be a suitable candidate for preparation by a mixed Claisen
condensation?
(a)(c)
(b d)
B-8. What is the major product of the following reaction?
(a)(c)(e)
(b)(d) HCCHCOCH
3
CH
3
O O
HCOCHCOCH
3
CH
3
O O
CH
3
OCHCOCH
3
CH
3
O
HOCH
2
CHCOCH
3
CH
3
O
CH
3
OCCHCOCH
3
CH
3
O O
CH
3
CH
2
COCH
3
HCOCH
3
?
1. NaOCH
3
2. H
H11001
H11001
O O
C
6
H
5
C
O CH
3
CH
3
O
COCH
2
CH
3
CC
6
H
5
CCH
2
COCH
2
CH
3
O O
C
6
H
5
CH
2
CCH
2
COCH
2
CH
3
O O
CH
3
CH
2
CCH
2
COCH
2
CH
3
O O
O
OH
O
O
OH
O
O O
OH
O O
OCH
2
CH
3
NaOCH
2
CH
3
ethanol
?H11001CH
2
(CO
2
CH
2
CH
3
)
2
(CH
3
)
2
C CHCCH
3
O
1. KOH
2. H
H11001
3. heat
ESTER ENOLATES 603
Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website