第一章 蛋白质化学蛋白质(Protein)是生物体的基本组成成份。蛋白质英文一词“protein”,是荷兰化学家Mulder首先使用的,来自于希腊语“protos”意为“第一”和“最重要的”。在机体内蛋白质的含量很多,约占机体固体成分的45%,它的分布很广,几乎所有的器官组织都含蛋白质,并且它又与所有的生命活动密切联系。
第一节 概 述一、蛋白质的生物学意义
1,酶的催化作用,已知酶有2000多种;
2,运输和储藏作用;
3,激素的调节作用,肽类和氨基酸类、蛋白类;
4,运动功能,肌肉收缩;
5,结构成分和机械支持物,胶原蛋白和弹性蛋白;
6,免疫功能,抗体(免疫球蛋白);
7,构成生物膜,体现膜功能,膜蛋白、载体、受体;
8,毒素的强调节作用,毒蛋白;
9,与动物生长生殖相关,蛋白质有功能大分子之称。
二、蛋白质的分类蛋白质的种类繁多,结构复杂,迄今为止没有一个理想的分类方法。着眼的侧面不同,分类也就不同,例如从蛋白质形状上,可将它们分为球状蛋白质及纤维状蛋白质;从组成上可分为单纯蛋白质(分子中只含氨基酸残基)及结合蛋白质(分子中除氨基酸外还有非氨基酸物质,后者称辅基);单纯蛋白质又可根据理化性质及来源分为清蛋白(又名白蛋白,albumin)、球蛋白(globulin)、谷蛋白(glutelin)、醇溶谷蛋白(prolamine)、精蛋白(protamine)、组蛋白(histone)、硬蛋白(scleroprotein)等。结合蛋白又可按其辅基的不同分为核蛋白(nucleoprotein)、磷蛋白(phosphoprotein)、金属蛋白(metalloprotein)、色蛋白(chromoprotein)等。
此外,还可以按蛋白质的功能将其分为活性蛋白质(如酶、激素蛋白质、运输和贮存蛋白质、运动蛋白质、受体蛋白质、膜蛋白质等)和非活性蛋白质(如胶原、角蛋白等)两大类。
三种方法
①.根据组成
 简单蛋白――蛋白质完全由AA组成。Eg.核糖核酸酶、胰岛素
 结合蛋白――除了蛋白质部分外,还有非蛋白质成分(辅基、配基) eg.血红蛋白、核蛋白
②.根据分子的形状
球状蛋白质――分子对称性佳,外形接近球状或椭球状,溶解度较好,能结晶。Eg.血红蛋白、血清球蛋白。
纤维状蛋白质――对称性差,分子类似细棒或纤维
可溶性纤维状蛋白质――肌球蛋白。
不溶性纤维状蛋白质――胶原、弹性蛋白。
③.根据功能分类酶、运输蛋白、营养和贮存蛋白质,结构蛋白质、防御蛋白质、运动蛋白质。
表:简单蛋白质的分类
1,清蛋白(albumin):溶于水及稀盐、稀酸或稀碱溶液。为饱和硫酸铵所沉淀。广泛存在于生物体内,如血清清蛋白、乳清蛋白等。
2,球蛋白(globulin):为半饱和硫酸铵所沉淀。不溶于水而溶于稀盐溶液的称拟球蛋白(euglobulin);溶于水的称拟球蛋白(pseudoglobulin).普遍  存在于生物体内,如血清球蛋白、肌球蛋白和植物种子球蛋白等。
3.谷蛋白(glutelin):不溶于水、醇及中性盐溶液,但易溶于稀酸或稀碱。如米谷蛋白(oryzenin)和麦谷蛋白(glutanin)等。
4.醇溶谷蛋白(prolamine):不溶于水及无水乙醇,但溶于70-80%乙醇中。其特点是脯氨酸和酰胺较多,非极性侧链远较极性侧链多。这类蛋白质主要存在于植物种子中。如玉米醇溶蛋白(zein)、麦醇溶蛋白(gliadin)等。
5.组蛋白(histone):溶于水及稀酸,但为稀氨水所沉淀。分子中组氨酸、赖氨酸较多,分子呈碱性。如小牛胸腺组蛋白等。
6.鱼精蛋白(protamine):溶于水及稀酸,不溶于氨水。分子呈碱性。如鲑精蛋白(salmin)等。
7.硬蛋白(scleroprotain):不溶于水、盐、稀酸或稀碱。这类蛋白是动物体内作为结缔及保护功能的蛋白质。例如,角蛋白(keratin)、胶原(collagen)、网硬蛋白(reticulin)和弹性蛋白(elastin)等。
表:结合蛋白质的分类
1.核蛋白(nucleoprotain):辅基是核酸,如脱氧核糖核蛋白、核糖体、烟草花叶病毒等。
2.脂蛋白(lipoprotain):与脂质结合的蛋白质。脂质成分有磷脂、固醇和中性脂等。如血中的β1-脂蛋白。卵黄球蛋白(lipovitellin)等。
3.糖蛋白(glycoprotein)和粘蛋白(mucoprotein):辅基成分为半乳糖、甘露糖、己糖胺、己糖醛酸、唾液酸、硫酸或磷酸等。如卵清蛋白、γ    -球蛋白,血清类粘蛋白(seromucoid)等。
4.磷蛋白(phosphoprotein):磷酸基通过酯键与蛋白质中的丝氨酸或苏氨酸残基侧链相连。如酪蛋白胃蛋白酶等。
5.血红素蛋白(hemoprotein):辅基为血红素,它是卟啉类化合物,卟啉环中心含有金属。含铁的如血红蛋白、细胞色素c,含的有叶绿蛋白,含铜的  有血蓝蛋白(Hemocyanin)等。
6.黄素蛋白(flavoprotein):辅基为黄素嘌呤二核苷酸。如琥珀酸脱氢、D-氨基酸氧化酶等。
7.金属蛋白(metalloprotein):与金属直接结合的蛋白质。如铁蛋白(ferritin)含铁,乙醇脱氢酶含锌,黄嘌呤氧化酶含钼和铁等。
三、蛋白质的化学组成
1.元素组成:
C、H、O、N、S、P、Fe
C:50% H:7% O:23% N:16% S:0-3% 其他:微量
P:牛奶中的酪蛋白含磷;Fe:血中的血红蛋白含铁;I:甲状腺中甲状腺球蛋白含碘。
2.蛋白质的平均含N量16%
凯氏定氮的基础蛋白质含量=蛋白N×1/16%=蛋白N×6.25
3.蛋白质由20种L-型、α-AA组成的长链分子四、蛋白质的大小与分子量蛋白质是分子量很大的生物分子
1.均一的蛋白质它的所有分子在AA的组成和顺序以及肽链的长度方面是相同的
2.寡聚蛋白质某些蛋白质是由两个或更多个蛋白质亚基(多肽链)通过非共价结合而成的。
特点:a.可解离成亚基,但相当稳定;b.可以结晶的形式从组织中分离;c,有此蛋白质以寡聚蛋白质表现其活性的。
3,简单蛋白质AA残基数目的估算。
AA残基的数目=蛋白分子量/110
因为,AA残基的平均分子量=128-18=110。
第二节 氨 基 酸一、氨基酸的结构蛋白质可以受酸、碱或酶的作用而水解。例如,一种单纯蛋白质用6N盐酸在真空下110℃水解约16小时,可达到完全水解(酸水解的条件下,色氨酸、酪氨酸易被破坏)。利用层析等手段分析水解液,就可证明组成蛋白质分子的基本单位是氨基酸。构成天然蛋白质的氨基酸共20种。
这些氨基酸为L-α-氨基酸(L-α-amino acid),其结构通式如下:
生物界中也发现一些D系氨基酸,主要存在于某些抗菌素以及个别植物的生物碱中。
二、氨基酸的分类组成蛋白质的氨基酸按其α-碳原子上侧链R的结构分为20种,20种氨基酸按R的结构和极性的不同有以下两种分类方法。
(一)根据R的结构不同分类
(二)根据侧链R的极性不同分为非极性和极性氨基酸氨基酸的R基团不带电荷或极性极微弱的属于非极性R基氨基酸,如:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、蛋氨酸、苯丙氨酸、色氨酸、脯氨酸。它们的R基团具有疏水性。
氨基酸的R基团带电荷或有极性的属于极性氨基酸,它们又可分为:
(1)极性R基氨基酸:R基团有极性,但不解离,或仅极弱地解离,它们的R基团有亲水性。如:丝氨酸、苏氨酸、半胱氨酸、酪氨酸、谷氨酰胺、天门冬酰胺。
(2)酸性R基氨基酸:R基团有极性,且解离,在中性溶液中显酸性,亲水性强。如天门冬氨酸、谷氨酸。
(3)碱性R基氨基酸:R基团有极性,且解离,在中性溶液中显碱性,亲水性强。如组氨酸、赖氨酸、精氨酸。
(三)稀有氨基酸(P128)
(四)非蛋白氨基酸(P129)
三、氨基酸的重要性质
(一)、物理性质
1,形态:均为白色结晶或粉末,不同氨基酸的晶型结构不同。
2,溶解性:一般都溶于水,不溶或微溶于醇,不溶于丙酮,在稀酸和稀碱中溶解性好。
3,熔点:氨基酸的熔点一般都比较高,一般都大于200℃,超过熔点以上氨基酸分解产生胺和二氧化碳。
4,光吸收:氨基酸在可见光范围内无光吸收,在近紫外区含苯环氨基酸有光的吸收。
5,旋光性:除甘氨酸外的氨基酸均有旋光性。
6,一般都溶于水(除胱AA和酪AA)脯AA和羟脯AA还能溶于乙醇或乙醚中
(二)、化学性质:
1,氨基酸的两性电离及等电点:
氨基酸既含有氨基,可接受H+,又含有羧基,可电离出H+,所以氨基酸具有酸碱两性性质。通常情况下,氨基酸以两性离子的形式存在,如下图所示:
氨基酸在酸性环境中,主要以阳离子的形式存在,在碱性环境中,主要以阴离子的形式存在。在某一pH环境下,以两性离子(兼性离子)的形式存在。该pH称为该氨基酸的等电点。所以氨基酸的等电点可以定义为:氨基酸所带正负电荷相等时的溶液pH。
氨基酸的水溶液既可被酸滴定,又可被碱滴定,应该具有两性电离的性质,现以甘氨酸为例来说明氨基酸两性电离的特点。下图是甘氨酸的电离酸碱滴定曲线,从左向右是用NaOH滴定的曲线,溶液的pH由小到大逐渐升高;从右向左是用HCL滴定的曲线,溶液的pH由大到小逐渐降低。曲线中从左向右第一个拐点是氨基酸羧基解离50%的状态,第二个拐点是氨基酸的等电点,第三个拐点是氨基酸氨基解离50%的状态。
通过氨基酸的滴定曲线,可用下列Henderson—Hasselbalch方程求出各解离基团的解离常数(pK,):
根据pK,可求出氨基酸的等电点,可由其等电点左右两个pK,值的算术平均值求出。
中性及酸性氨基酸:pI=(pK1,+pK2,)/2
中性氨基酸:pK1,为α—羧基的碱性氨基酸:
pI=(pK2,+pK3,)/2解离常数,pK2,为α—氨基的解离常数。
酸性氨基酸,pK1,为α—羧基的解离常数,pK2,为侧链羧基的解离常数。
2.由α-氨基参加的反应:
(1)亚硝酸反应:放出氮气,氮气的一半来自氨基氮,一半来自亚硝酸,在通常情况下测定生成的氮气的体积量可计算氨基酸的量,此反应可用于测定蛋白质的水解程度。
(2)与甲醛的反应:用过量的中性甲醛与氨基酸反应,可游离出氢离子,然后用NaOH滴定,从消耗的碱量可以计算出氨基酸的含量。此法称为间接滴定法。
(3)与2,4—二硝基氟苯(2,4—DNFB)的反应(Sanger反应):生成黄色的二硝基苯—氨基酸衍生物。
(4)与苯异硫氰酸酯(PITC)反应(Edman反应):生成苯乙内酰硫脲—氨基酸。
(5)与丹磺酰氯(DNS—Cl)的反应:生成荧光物质DNS—氨基酸。
(4)(5)反应用于蛋白质的N—末端的测定。
3.α-羧基参加的反应:
(1)与碱反应成盐:
(2)与醇反应成酯:
4.α-氨基与α-羧基共同参加的反应与茚三酮的反应:除脯氨酸与羟脯氨酸外,可与其它氨基酸生成蓝紫色化合物;脯氨酸与羟脯氨酸为黄色化合物。
5.侧链反应(颜色反应):
(1)Millon反应:检测Tyr或含Tyr的蛋白质的反应。
Millon试剂:汞的硝酸盐与亚硝酸盐溶液。产物:红色的化合物。
(2)Folin反应:检测Tyr或含Tyr的蛋白质的反应。
Folin试剂:磷钼酸、磷钨酸混合溶液。产物:蓝色的钼蓝、钨蓝。
(3)坂口反应:检测Arg或含Arg的蛋白质的反应。
坂口试剂:α—萘酚的碱性次溴酸钠溶液。产物:砖红色的沉淀。
(4)Pauly反应:检测His、Tyr及含His、Tyr蛋白质的反应。
试剂:对氨基苯磺酸盐酸溶液、亚硝酸钠、碳酸钠混合溶液。
产物:橘红色的化合物。
(5)乙醛酸的反应:检测Trp或含Trp蛋白质的反应。
当Trp与乙醛酸和浓硫酸在试管中叠加时,产生分层现象,界面出现紫色环。
(6)Cys的反应:Cys或含Cys蛋白质与亚硝基亚铁氰酸钠在稀氨的溶液中,产生一种红色的化合物。
蛋白质的结构及其功能蛋白质为生物高分子物质之一,具有三维空间结构,因而能执行复杂的生物学功能。蛋白质结构与功能之间的关系非常密切。在研究中,一般将蛋白质分子的结构分为一级结构与空间结构两类。
每一种天然的蛋白质都有自己特有的空间结构称蛋白质的构象。
一、肽肽键就是一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合形成的键肽:一个氨基酸的羧基α—羧基和另一个氨基酸分子的α—氨基缩合失去一分子水从而形成肽,氨基酸之间通过肽键联结起来的化合物称为肽(peptide)。两个氨基酸形成的肽叫二肽,三个氨基酸形成的肽叫三肽……,十个氨基酸形成的肽叫十肽,一般将十肽以下称为寡肽(oligopeptide),以上者称多肽(polypeptide)或称多肽链。
组成多肽链的氨基酸在相互结合时,失去了一分子水,因此把多肽中的氨基酸单位称为氨基酸残基(amino acid residue)。
多肽链的书写与名称在多肽链中,肽链的一端保留着一个α-氨基,另一端保留一个α-羧基,带α-氨基的末端称氨基末端(N端);带α-羧基的末端称羧基末端(C端)。肽链书写:一般丛N末端向C末端书写,书写多肽链时可用略号,N端写于左侧,用H做标帜,C端于右侧用OH表示。肽详细命名时为某某酰某某酰……某某酸。
如上图中的多肽链中文名称为:苏氨酰甘氨酰酪氨酰丙氨酰亮氨酸;中文名称缩写为:苏—甘—酪—丙—亮;英文三字母表示为:Thy·Gly·Tyr·Ala·Leu;英文单字母表示为:T·G·Y·A·L。
有一个例外,谷胱甘肽是由谷氨酸、半胱氨酸和甘氨酸三个氨基酸所组成的三肽,全名是γ-谷氨酰半胱氨酰甘氨酸,简称谷胱甘肽(glutachione,简写GSH)。其中N末端的谷氨酸是通过γ-羧基与半胱氨酸的氨基相连。
二、蛋白质的一级结构蛋白质的一级结构(primary structure)就是蛋白质多肽链中氨基酸残基的排列顺序(sequence),也是蛋白质最基本的结构。它是由基因上遗传密码的排列顺序所决定的。各种氨基酸按遗传密码的顺序,通过肽键连接起来,成为多肽链,故肽键是蛋白质结构中的主键。迄今已有约1000种左右蛋白质的一级结构被研究确定,如胰岛素,胰核糖核酸酶、胰蛋白酶等。
蛋白质的一级结构决定了蛋白质的二级、三级等高级结构,成百亿的天然蛋白质各有其特殊的生物学活性,决定每一种蛋白质的生物学活性的结构特点,首先在于其肽链的氨基酸序列,由于组成蛋白质的20种氨基酸各具特殊的侧链,侧链基团的理化性质和空间排布各不相同,当它们按照不同的序列关系组合时,就可形成多种多样的空间结构和不同生物学活性的蛋白质分子。
三、蛋白质的空间结构蛋白质分子的多肽链并非呈线形伸展,而是折叠和盘曲构成特有的比较稳定的空间结构。蛋白质的生物学活性和理化性质主要决定于空间结构的完整,因此仅仅测定蛋白质分子的氨基酸组成和它们的排列顺序并不能完全了解蛋白质分子的生物学活性和理化性质。例如球状蛋白质(多见于血浆中的白蛋白、球蛋白、血红蛋白和酶等)和纤维状蛋白质(角蛋白、胶原蛋白、肌凝蛋白、纤维蛋白等),前者溶于水,后者不溶于水,显而易见,此种性质不能仅用蛋白质的一级结构的氨基酸排列顺序来解释。
蛋白质的空间结构就是指蛋白质的二级、三级和四级结构。如下图:
(一)蛋白质的二级结构蛋白质的二级结构(secondary structure)是指多肽链中主链原子的局部空间排布即构象,不涉及侧链部分的构象。
1.肽键平面(或称酰胺平面,amide plane)。Pauling等人对一些简单的肽及氨基酸的酰胺等进行了X线衍射分析,得出下图所示结构:
(1)肽键中的C-N键长0.132nm,比相邻的N-C单键(0.147nm)短,而较一般C=N双键(0.128nm)长,可见,肽键中-C-N-键的性质介于单、双键之间,具有部分双键的性质,因而不能旋转,这就将固定在一个平面之内。
(2)肽键的C及N周围三个键角之和均为360°,说明都处于一个平面上,也就是说六个原子(-Cα—CO—NH—Cα-)基本上同处于一个平面,这就是肽键平面。肽链中能够旋转的只有α碳原子所形成的单键,此单键的旋转决定两个肽键平面的位置关系,于是肽键平面成为肽链盘曲折叠的基本单位。
(3)肽键中的C-N既具有双键性质,就会有顺反不同的立体异构,已证实CO和NH处于反位。
2.蛋白质主链构象的结构单元
1)α-螺旋
Pauling等人对α-角蛋白(α-keratin)进行了X线衍射分析,从衍射图中看到有0.5~0.55nm的重复单位,故推测蛋白质分子中有重复性结构,并认为这种重复性结构为α-螺旋(α-helix)见下图:
α-螺旋的结构特点如下:
(1)多个肽键平面通过α-碳原子旋转,相互之间紧密盘曲成稳固的右手螺旋。
(2)主链呈螺旋上升,每3.6个氨基酸残基上升一圈,相当于0.54nm,这与X线衍射图符合。
(3)相邻两圈螺旋之间借肽键中C=O和H桸形成许多链内氢健,即每一个氨基酸残基中的NH和前面相隔三个残基的C=O之间形成氢键,这是稳定α-螺旋的主要键。
(4)肽链中氨基酸侧链R,分布在螺旋外侧,其形状、大小及电荷影响α-螺旋的形成。酸性或碱性氨基酸集中的区域,由于同电荷相斥,不利于α-螺旋形成;较大的R(如苯丙氨酸、色氨酸、异亮氨酸)集中的区域,也妨碍α-螺旋形成;脯氨酸因其α-碳原子位于五元环上,不易扭转,加之它是亚氨基酸,不易形成氢键,故不易形成上述α-螺旋;甘氨酸的R基为H,空间占位很小,也会影响该处螺旋的稳定。
2)β-片层结构
Astbury等人曾对β-角蛋白进行X线衍射分析,发现具有0.7nm的重复单位。如将毛发α-角蛋白在湿热条件下拉伸,可拉长到原长二倍,这种α-螺旋的X线衍射图可改变为与β-角蛋白类似的衍射图。说明β-角蛋白中的结构和α-螺旋拉长伸展后结构相似。两段以上的这种折叠成锯齿状的肽链,通过氢键相连而平行成片层状的结构称为β-片层(β-pleated sheet)结构或称β-折迭,如下图:
β-片层结构特点是:
(1)是肽链相当伸展的结构,肽链平面之间折叠成锯齿状,相邻肽键平面间呈110°角。氨基酸残基的R侧链伸出在锯齿的上方或下方。(2)依靠两条肽链或一条肽链内的两段肽链间的C=O与HN形成氢键,使构象稳定。(3)两段肽链可以是平行的,也可以是反平行的。即前者两条链从“N端”到“C端”是同方向的,后者是反方向的。β-片层结构的形式十分多样,正、反平行能相互交替。(4)平行的β-片层结构中,两个残基的间距为0.65nm;反平行的β-片层结构,则间距为0.7nm。
3)β-转角
蛋白质分子中,肽链经常会出现180°的回折,在这种回折角处的构象就是β-转角(β-turn或β-bend)。β-转角中,第一个氨基酸残基的C=O与第四个残基的N桯形成氢键,从而使结构稳定。如下图:
4)无规卷曲
没有确定规律性的部分肽链构象,肽链中肽键平面不规则排列,属于松散的无规卷曲(random coil)。
(二)超二级结构和结构域超二级结构(supersecondary structure)是指在多肽链内顺序上相互邻近的二级结构常常在空间折叠中靠近,彼此相互作用,形成规则的二级结构聚集体。目前发现的超二级结构有三种基本形式:α螺旋组合(αα);β折叠组合(βββ)和α螺旋β折叠组合(βαβ),其中以βαβ组合最为常见。它们可直接作为三级结构的“建筑块”或结构域的组成单位,是蛋白质构象中二级结构与三级结构之间的一个层次,故称超二级结构。下面是一些超二级结构的示意图:
已知功能的超二级结构有:
a.螺旋-回折-螺旋(helix-turn-helix,HTH);
b.锌指(zinc finger,ZF);
c.亮氨酸拉链(Leucine zipper,LZ);
d.螺旋-环-螺旋(helix-loop-helix,HLH);
e.EF-手(EF-hand)
结构域(domain)也是蛋白质构象中二级结构与三级结构之间的一个层次。在较大的蛋白质分子中,由于多肽链上相邻的超二级结构紧密联系,形成二个或多个在空间上可以明显区别它与蛋白质亚基结构的区别。一般每个结构域约由100-200个氨基酸残基组成,各有独特的空间构象,并承担不同的生物学功能。结构域是蛋白质分子内独立的结构单元、独立的功能单元和独立的折叠单元。
作为独立的结构单元,可以保持相对稳定性,结构域间由柔性的连接肽连接起来,位移大小由连接肽性质决定,一个结构域由100-250个aa残基组成,d=2.5nm。可以把结构域看作是分子的模块,一个pro中结构域可以相似,也可以不同。
作为独立的功能单元,不同的结构往往具有不同的功能,功能相同的酶的结构域大多是相同的。多数的结构域是几个基因编码组成的。
作为独立的折叠单元,结构域在折叠过程中,保持一定的相对稳定性。
如免疫球蛋白(IgG)由12个结构域组成,其中两个轻链上各有2个,两个重链上各有4个;补体结合部位与抗原结合部位处于不同的结构域。一个蛋白质分子中的几个结构域有的相同,有的不同;而不同蛋白质分子之间肽链中的各结构域也可以相同。如乳酸脱氢酶、3-磷酸甘油醛脱氢酶、苹果酸脱氢酶等均属以NAD+为辅酶的脱氢酶类,它们各自由2个不同的结构域组成,但它们与NAD+结合的结构域构象则基本相同。
(三)蛋白质的三级结构蛋白质的多肽链在各种二级结构的基础上再进一步盘曲或折迭形成具有一定规律的三维空间结构,称为蛋白质的三级结构(tertiary structure)。蛋白质三级结构的稳定主要靠次级键,包括氢键、疏水键、盐键以及范德华力(Van der Wasls力)等。这些次级键可存在于一级结构序号相隔很远的氨基酸残基的R基团之间,因此蛋白质的三级结构主要指氨基酸残基的侧链间的结合。次级键都是非共价键,易受环境中pH、温度、离子强度等的影响,有变动的可能性。二硫键不属于次级键,但在某些肽链中能使远隔的二个肽段联系在一起,这对于蛋白质三级结构的稳定上起着重要作用。
现也有认为蛋白质的三级结构是指蛋白质分子主链折叠盘曲形成构象的基础上,分子中的各个侧链所形成一定的构象。侧链构象主要是形成微区(或称结构域domain)。对球状蛋白质来说,形成疏水区和亲水区。亲水区多在蛋白质分子表面,由很多亲水侧链组成。疏水区多在分子内部,由疏水侧链集中构成,疏水区常形成一些“洞穴”或“口袋”,某些辅基就镶嵌其中,成为活性部位。
具备三级结构的蛋白质从其外形上看,有的细长(长轴比短轴大10倍以上),属于纤维状蛋白质(fibrous protein),如丝心蛋白;有的长短轴相差不多基本上呈球形,属于球状蛋白质(globular protein),如血浆清蛋白、球蛋白、肌红蛋白,球状蛋白的疏水基多聚集在分子的内部,而亲水基则多分布在分子表面,因而球状蛋白质是亲水的,更重要的是,多肽链经过如此盘曲后,可形成某些发挥生物学功能的特定区域,例如酶的活性中心等。
(四)蛋白质的四级结构具有二条或二条以上独立三级结构的多肽链组成的蛋白质,其多肽链间通过次级键相互组合而形成的空间结构称为蛋白质的四级结构(quarternary structure)。其中,每个具有独立三级结构的多肽链单位称为亚基(subunit)。四级结构实际上是指亚基的立体排布、相互作用及接触部位的布局。亚基之间不含共价键,亚基间次级键的结合比二、三级结构疏松,因此在一定的条件下,四级结构的蛋白质可分离为其组成的亚基,而亚基本身构象仍可不变。 一种蛋白质中,亚基结构可以相同,也可不同。如烟草斑纹病毒的外壳蛋白是由2200个相同的亚基形成的多聚体;正常血红蛋白是两个α亚基与两个β亚基形成的四聚体;天冬氨酸氨甲酰基转移酶由六个调节亚基与六个催化亚基组成。有人将具有全套不同亚基的最小单位称为原聚体(protomer),如一个催化亚基与一个调节亚基结合成天冬氨酸氨甲酰基转移酶的原聚体。
某些蛋白质分子可进一步聚合成聚合体(polymer)。聚合体中的重复单位称为单体(monomer),聚合体可按其中所含单体的数量不同而分为二聚体、三聚体……寡聚体(oligomer)和多聚体(polymer)而存在,如胰岛素(insulin)在体内可形成二聚体及六聚体。
四、蛋白质的结构与功能的关系
1.蛋白质的一级结构与其构象及功能的关系蛋白质一级结构是空间结构的基础,特定的空间构象主要是由蛋白质分子中肽链和侧链R基团形成的次级键来维持,在生物体内,蛋白质的多肽链一旦被合成后,即可根据一级结构的特点自然折叠和盘曲,形成一定的空间构象。一级结构相似的蛋白质,其基本构象及功能也相似,例如,不同种属的生物体分离出来的同一功能的蛋白质,其一级结构只有极少的差别,而且在系统发生上进化位置相距愈近的差异愈小。在蛋白质的一级结构中,参与功能活性部位的残基或处于特定构象关键部位的残基,即使在整个分子中发生一个残基的异常,那么该蛋白质的功能也会受到明显的影响。被称之为“分子病”的镰刀状红细胞性贫血仅仅是574个氨基酸残基中,一个氨基酸残基即β亚基N端的第6号氨基酸残基发生了变异所造成的,这种变异来源于基因上遗传信息的突变。
2,蛋白质空间橡象与功能活性的关系蛋白质多种多样的功能与各种蛋白质特定的空间构象密切相关,蛋白质的空间构象是其功能活性的基础,构象发生变化,其功能活性也随之改变。蛋白质变性时,由于其空间构象被破坏,故引起功能活性丧失,变性蛋白质在复性后,构象复原,活性即能恢复。
在生物体内,当某种物质特异地与蛋白质分子的某个部位结合,触发该蛋白质的构象发生一定变化,从而导致其功能活性的变化,这种现象称为蛋白质的别构效应(allostery)。
蛋白质(或酶)的别构效应,在生物体内普遍存在,这对物质代谢的调节和某些生理功能的变化都是十分重要的。
现以血红蛋白(hemoglobin,简写Hb)为例来说明构象与功能的关系。
血红蛋白(avi)是红细胞中所含有的一种结合蛋白质,它的蛋白质部分称为珠蛋白(globin),非蛋白质部分(辅基)称为血红素(见下图)。Hb分子由四个亚基构成,每一亚基结合一分子血红素。正常成人Hb分子的四个亚基为两条α链,两条β链。α链由141个氨基酸残基组成,β链由146个氨基酸残基组成,它们的一级结构均已确定。每一亚基都具有独立的三级结构(avi),各肽链折叠盘曲成一定构象,β亚基中有8个α-螺旋区(分别称A、B……H螺旋区),α亚基中有7个α-螺旋区。在此基础上肽链进一步折叠形成球状,依赖侧链间形成的各种次级键维持稳定,使之球形表面为亲水区,球形向内,在E和F螺旋段间的20多个巯水氨基酸侧链构成口袋形的疏水区,辅基血红素就嵌接在其中,α亚基和β亚基构象相似,最后,四个亚基α2β2聚合成具有四级结构的Hb分子(见前图—血红蛋白)。在此分子中,四个亚基沿中央轴排布四方,两α亚基沿不同方向嵌入两个β亚基间,各亚基间依多种次级健联系,使整个分子呈球形,这些次级键对于维系Hb分子空间构象有重要作用,例如在四亚基间的8对盐键(见前图—血红蛋白结构与亚基间连接示意),它们的形成和断裂将使整个分子的空间构象发生变化。
血红素 血红素中铁与亚基和氧的结合
Hb在体内的主要功能为运输氧气,而Hb的别位效应,极有利于它在肺部与O2结合及在周围组织释放O2。
Hb是通过其辅基血红素的Fe2+与氧发生可逆结合的,血红素的铁原子共有6个配位键,其中4个与血红素的吡咯环的N结合,一个与珠蛋白亚基F螺旋区的第8位组氨酸残基的咪唑基的N相连接,空着的一个配位键可与O2可逆地结合,结合物称氧合血红蛋白。
在血红素中,四个吡咯环形成一个平面,在未与氧结合时Fe2+的位置高于平面0.7nm,一旦O2进入某一个α亚基的疏水“口袋”时,与Fe2+的结合会使Fe2+嵌入四吡咯平面中,也即向该平面内移动约0.75nm,铁的位置的这一微小移动,牵动组氨酸残基连同螺旋段的位移,再波及附近肽段构象,造成两个α亚基间盐键断裂,使亚基间结合变松,并促进第二亚基的变构并氧合,后者又促进第三亚基的氧合使Hb分子中第四亚基的氧合速度为第一亚基开始氧合时速度的数百倍。此种一个亚基的别构作用,促进另一亚基变构的现象,称为亚基间的协同效应(cooperativity),所以在不同氧分压下,Hb氧饱和曲线呈“S”型。
第四节 蛋白质的理化性质蛋白质是由氨基酸组成的大分子化合物,其理化性质一部分与氨基酸相似,如两性电离、等电点、呈色反应、成盐反应等,也有一部分又不同于氨基酸,如高分子量、胶体性、变性等。
一、蛋白质的胶体性质蛋白质分子量颇大,介于一万到百万之间,故其分子的大小已达到胶粒1~100nm范围之内。球状蛋白质的表面多亲水基团,具有强烈地吸引水分子作用,使蛋白质分子表面常为多层水分子所包围,称水化膜,从而阻止蛋白质颗粒的相互聚集。 与低分子物质比较,蛋白质分子扩散速度慢,不易透过半透膜,粘度大,在分离提纯蛋白质过程中,我们可利用蛋白质的这一性质,将混有小分子杂质的蛋白质溶液放于半透膜制成的囊内,置于流动水或适宜的缓冲液中,小分子杂质皆易从囊中透出,保留了比较纯化的囊内蛋白质,这种方法称为透析(dialysis)。蛋白质大分子溶液在一定溶剂中超速离心时可发生沉降。沉降速度与向心加速度之比值即为蛋白质的沉降系数S。
二、蛋白质的两性电离和等电点蛋白质是由氨基酸组成的,其分子中除两端的游离氨基和羧基外,侧链中尚有一些解离基,如谷氨酸、天门冬氨酸残基中的γ和β-羧基,赖氨酸残基中的ε-氨基,精氨酸残基的胍基和组氨酸的咪唑基。作为带电颗粒它可以在电场中移动,移动方向取决于蛋白质分子所带的电荷。蛋白质颗粒在溶液中所带的电荷,既取决于其分子组成中碱性和酸性氨基酸的含量,又受所处溶液的pH影响。当蛋白质溶液处于某一pH时,蛋白质游离成正、负离子的趋势相等,即成为兼性离子(zwitterion,净电荷为O),此时溶液的pH值称为蛋白质的等电点(isoelectric point,简写pI)。处于等电点的蛋白质颗粒,在电场中并不移动。蛋白质溶液的pH大于等电点,该蛋白质颗粒带负电荷,反之则带正电荷。各种蛋白质分子由于所含的碱性氨基酸和酸性氨基酸的数目不同,因而有各自的等电点。凡碱性氨基酸含量较多的蛋白质,等电点就偏碱性,如组蛋白、精蛋白等。反之,凡酸性氨基酸含量较多的蛋白质,等电点就偏酸性,人体体液中许多蛋白质的等电点在pH5.0左右,所以在体液中以负离子形式存在。
三、蛋白质的变性天然蛋白质的严密结构在某些物理或化学因素作用下,其特定的空间结构被破坏,从而导致理化性质改变和生物学活性的丧失,如酶失去催化活力,激素丧失活性称之为蛋白质的变性作用(denaturation)。变性蛋白质只有空间构象的破坏,一般认为蛋白质变性本质是次级键,二硫键的破坏,并不涉及一级结构的变化。 变性蛋白质和天然蛋白质最明显的区别是溶解度降低,同时蛋白质的粘度增加,结晶性破坏,生物学活性丧失,易被蛋白酶分解。引起蛋白质变性的原因可分为物理和化学因素两类。物理因素可以是加热、加压、脱水、搅拌、振荡、紫外线照射、超声波的作用等;化学因素有强酸、强碱、尿素、重金属盐、十二烷基磺酸钠(SDS)等。在临床医学上,变性因素常被应用于消毒及灭菌。反之,注意防止蛋白质变性就能有效地保存蛋白质制剂。变性并非是不可逆的变化,当变性程度较轻时,如去除变性因素,有的蛋白质仍能恢复或部分恢复其原来的构象及功能,变性的可逆变化称为复性。例如,核糖核酸酶中四对二硫键及其氢键。在β—巯基乙醇和8M尿素作用下,发生变性,失去生物学活性,变性后如经过透析去除尿素,β—巯基乙醇,并设法使疏基氧化成二硫键,酶蛋白又可恢复其原来的构象,生物学活性也几乎全部恢复,此称变性核糖核酸酶的复性。
许多蛋白质变性时被破坏严重,不能恢复,称为不可逆性变性。
四、蛋白质的沉淀蛋白质分子凝聚从溶液中析出的现象称为蛋白质沉淀(precipitation),变性蛋白质一般易于沉淀,但也可不变性而使蛋白质沉淀,在一定条件下,变性的蛋白质也可不发生沉淀。 蛋白质所形成的亲水胶体颗粒具有两种稳定因素,即颗粒表面的水化层和电荷。若无外加条件,不致互相凝集。然而除掉这两个稳定因素(如调节溶液pH至等电点和加入脱水剂)蛋白质便容易凝集析出。如将蛋白质溶液pH调节到等电点,蛋白质分子呈等电状态,虽然分子间同性电荷相互排斥作用消失了。但是还有水化膜起保护作用,一般不致于发生凝聚作用,如果这时再加入某种脱水剂,除去蛋白质分子的水化膜,则蛋白质分子就会互相凝聚而析出沉淀;反之,若先使蛋白质脱水,然后再调节pH到等电点,也同样可使蛋白质沉淀析出。引起蛋白质沉淀的主要方法有下述几种:
1,盐析(Salting Out)在蛋白质溶液中加入大量的中性盐以破坏蛋白质的胶体稳定性而使其析出,这种方法称为盐析。常用的中性盐有硫酸铵、硫酸钠、氯化钠等。各种蛋白质盐析时所需的盐浓度及pH不同,故可用于对混和蛋白质组分的分离。例如用半饱和的硫酸铵来沉淀出血清中的球蛋白,饱和硫酸铵可以使血清中的白蛋白、球蛋白都沉淀出来,盐析沉淀的蛋白质,经透析除盐,仍保证蛋白质的活性。调节蛋白质溶液的pH至等电点后,再用盐析法则蛋白质沉淀的效果更好。
2,重金属盐沉淀蛋白质蛋白质可以与重金属离子如汞、铅、铜、银等结合成盐沉淀,沉淀的条件以pH稍大于等电点为宜。因为此时蛋白质分子有较多的负离子易与重金属离子结合成盐。重金属沉淀的蛋白质常是变性的,但若在低温条件下,并控制重金属离子浓度,也可用于分离制备不变性的蛋白质。临床上利用蛋白质能与重金属盐结合的这种性质,抢救误服重金属盐中毒的病人,给病人口服大量蛋白质,然后用催吐剂将结合的重金属盐呕吐出来解毒。
3,生物碱试剂以及某些酸类沉淀蛋白质蛋白质又可与生物碱试剂(如苦味酸、钨酸、鞣酸)以及某些酸(如三氯醋酸、过氯酸、硝酸)结合成不溶性的盐沉淀,沉淀的条件应当是pH小于等电点,这样蛋白质带正电荷易于与酸根负离子结合成盐。临床血液化学分析时常利用此原理除去血液中的蛋白质,此类沉淀反应也可用于检验尿中蛋白质。
4,有机溶剂沉淀蛋白质可与水混合的有机溶剂,如酒精、甲醇、丙酮等,对水的亲和力很大,能破坏蛋白质颗粒的水化膜,在等电点时使蛋白质沉淀。在常温下,有机溶剂沉淀蛋白质往往引起变性。例如酒精消毒灭菌就是如此,但若在低温条件下,则变性进行较缓慢,可用于分离制备各种血浆蛋白质。
5,加热凝固将接近于等电点附近的蛋白质溶液加热,可使蛋白质发生凝固(coagulation)而沉淀。加热首先是加热使蛋白质变性,有规则的肽链结构被打开呈松散状不规则的结构,分子的不对称性增加,疏水基团暴露,进而凝聚成凝胶状的蛋白块。如煮熟的鸡蛋,蛋黄和蛋清都凝固。蛋白质的变性、沉淀,凝固相互之间有很密切的关系。但蛋白质变性后并不一定沉淀,变性蛋白质只在等电点附近才沉淀,沉淀的变性蛋白质也不一定凝固。例如,蛋白质被强酸、强碱变性后由于蛋白质颗粒带着大量电荷,故仍溶于强酸或强减之中。但若将强碱和强酸溶液的pH调节到等电点,则变性蛋白质凝集成絮状沉淀物,若将此絮状物加热,则分子间相互盘缠而变成较为坚固的凝块。
五、蛋白质的呈色反应
1,茚三酮反应(Ninhydrin Reaction) α-氨基酸与水化茚三酮(苯丙环三酮戊烃)作用时,产生蓝色反应,由于蛋白质是由许多α-氨基酸组成的,所以也呈此颜色反应。
2,双缩脲反应(Biuret Reaction)蛋白质在碱性溶液中与硫酸铜作用呈现紫红色,称双缩脲反应。凡分子中含有两个以上-CO-NH-键的化合物都呈此反应,蛋白质分子中氨基酸是以肽键相连,因此,所有蛋白质都能与双缩脲试剂发生反应。
3,米伦反应(Millon Reaction)蛋白质溶液中加入米伦试剂(亚硝酸汞、硝酸汞及硝酸的混和液),蛋白质首先沉淀,加热则变为红色沉淀,此为酪氨酸的酚核所特有的反应,因此含有酪氨酸的蛋白质均呈米伦反应。此外,蛋白质溶液还可与酚试剂、乙醛酸试剂、浓硝酸等发生颜色反应。
第五节 蛋白质的分离、纯化与测定一、分离纯化蛋白质的意义
研究蛋白质的结构与功能:要求纯度高,不变性;
提取活性的酶或蛋白质:必须保持天然活性状态;
作为药物或食品添加剂:纯度要求一般。
二、蛋白质分离纯化的一般步骤材料的选择→原料的预处理→蛋白质的抽提→从抽提液中沉淀蛋白质→纯化→蛋白质的结晶
1.原料的选择:要求含待分离的蛋白质丰富,廉价,易得,容易收集,新鲜无腐败。
2.原料的预处理:如果待分离蛋白质为胞外蛋白质,材料破碎后,用适当的溶剂直接抽提;若待分离蛋白质为胞内蛋白质,则需要破碎细胞膜,再用适当的溶剂抽提。
3.从抽提液中沉淀蛋白质:常用盐析法、低温乙醇沉淀法、等电点沉淀法。
4.纯化:将沉淀的蛋白质溶解,再选择适当的纯化方法,得到纯度比较高的蛋白质溶液。
纯化方法:透析或超滤、电泳法、凝胶过滤法、离子交换层析、吸附层析法、超速离心法等。
5.蛋白质的结晶:从溶液中重新沉淀蛋白质。
几种常见的纯化蛋白质的方法如下图所示:
凝胶电泳法:
离子交换层析
凝胶过滤层析
第六节 蛋白质组、蛋白质组学及研究技术路线基因组(genome)包含的遗传信息经转录产生mRNA,一个细胞在特定生理或病理状态下表达的所有种类的mRNA称为转录子组(transcriptome)。很显然,不同细胞在不同生理或病理状态下转录子组包含的mRNA的种类不尽相同。mRNA经翻译产生蛋白质,一个细胞在特定生理或病理状态下表达的所有种类的蛋白质称为蛋白质组(proteome)。同理,不同细胞在不同生理或病理状态下所表达的蛋白质的种类也不尽相同。蛋白质是基因功能的实施者,因此对蛋白质结构,定位和蛋白质-蛋白质相互作用的研究将为阐明生命现象的本质提供直接的基础。
生命科学是实验科学,因此生命科学的发展极大地依赖于实验技术的发展。以DNA序列分析技术为核心的基因组研究技术推动了基因组研究的日新月异,而以基因芯片技术为代表的基因表达研究技术为科学家了解基因表达规律立下汗马功劳。在蛋白质组研究中,二维电泳和质谱技术的黄金组合又为科学家掌握蛋白质表达规律再铸辉煌。蛋白质组学(proteomics)就是指研究蛋白质组的技术及这些研究得到的结果。
蛋白质组学的研究试图比较细胞在不同生理或病理条件下蛋白质表达的异同,对相关蛋白质进行分类和鉴定。更重要的是蛋白质组学的研究要分析蛋白质间相互作用和蛋白质的功能。
蛋白质组学的研究内容包括:
1.蛋白质鉴定:可以利用一维电泳和二维电泳并结合Western等技术,利用蛋白质芯片和抗体芯片及免疫共沉淀等技术对蛋白质进行鉴定研究。
2.翻译后修饰:很多mRNA表达产生的蛋白质要经历翻译后修饰如磷酸化,糖基化,酶原激活等。翻译后修饰是蛋白质调节功能的重要方式,因此对蛋白质翻译后修饰的研究对阐明蛋白质的功能具有重要作用。
3.蛋白质功能确定:如分析酶活性和确定酶底物,细胞因子的生物分析/配基-受体结合分析。可以利用基因敲除和反义技术分析基因表达产物-蛋白质的功能。另外对蛋白质表达出来后在细胞内的定位研究也在一定程度上有助于蛋白质功能的了解。Clontech的荧光蛋白表达系统就是研究蛋白质在细胞内定位的一个很好的工具。
4.对人类而言,蛋白质组学的研究最终要服务于人类的健康,主要指促进分子医学的发展。如寻找药物的靶分子。很多药物本身就是蛋白质,而很多药物的靶分子也是蛋白质。药物也可以干预蛋白质-蛋白质相互作用。
在基础医学和疾病机理研究中,了解人不同发育、生长期和不同生理、病理条件下及不同细胞类型的基因表达的特点具有特别重要的意义。这些研究可能找到直接与特定生理或病理状态相关的分子,进一步为设计作用于特定靶分子的药物奠定基础。
不同发育、生长期和不同生理、病理条件下不同的细胞类型的基因表达是不一致的,因此对蛋白质表达的研究应该精确到细胞甚至亚细胞水平。可以利用免疫组织化学技术达到这个目的,但该技术的致命缺点是通量低。LCM技术可以精确地从组织切片中取出研究者感兴趣的细胞类型,因此LCM技术实际上是一种原位技术。取出的细胞用于蛋白质样品的制备,结合抗体芯片或二维电泳-质谱的技术路线,可以对蛋白质的表达进行原位的高通量的研究。很多研究采用匀浆组织制备蛋白质样品的技术路线,其研究结论值得怀疑,因为组织匀浆后不同细胞类型的蛋白质混杂在一起,最后得到的研究数据根本无法解释蛋白质在每类细胞中的表达情况。虽然培养细胞可以得到单一类型细胞,但体外培养的细胞很难模拟体内细胞的环境,因此这样研究得出的结论也很难用于解释在体实际情况。因此在研究中首先应该将不同细胞类型分离,分离出来的不同类型细胞可以用于基因表达研究,包括mRNA和蛋白质的表达。
LCM技术获得的细胞可以用于蛋白质样品的制备。可以根据需要制备总蛋白,或膜蛋白,或核蛋白等,也可以富集糖蛋白,或通过去除白蛋白来减少蛋白质类型的复杂程度。相关试剂盒均有厂商提供。
蛋白质样品中的不同类型的蛋白质可以通过二维电泳进行分离。二维电泳可以将不同种类的蛋白质按照等电点和分子量差异进行高分辨率的分离。成功的二维电泳可以将2000到3000种蛋白质进行分离。电泳后对胶进行高灵敏度的染色如银染和荧光染色。如果是比较两种样品之间蛋白质表达的异同,可以在同样条件下分别制备二者的蛋白质样品,然后在同样条件下进行二维电泳,染色后比较两块胶。也可以将二者的蛋白质样品分别用不同的荧光染料标记,然后两种蛋白质样品在一块胶上进行二维电泳的分离,最后通过荧光扫描技术分析结果。
胶染色后可以利用凝胶图象分析系统成像,然后通过分析软件对蛋白质点进行定量分析,并且对感兴趣的蛋白质点进行定位。通过专门的蛋白质点切割系统,可以将蛋白质点所在的胶区域进行精确切割。接着对胶中蛋白质进行酶切消化,酶切后的消化物经脱盐/浓缩处理后就可以通过点样系统将蛋白质点样到特定的材料的表面(MALDI-TOF)。最后这些蛋白质就可以在质谱系统中进行分析,从而得到蛋白质的定性数据;这些数据可以用于构建数据库或和已有的数据库进行比较分析。实际上像人类的血浆,尿液,脑脊液,乳腺,心脏,膀胱癌和磷状细胞癌及多种病原微生物的蛋白质样品的二维电泳数据库已经建立起来,研究者可以登录www.expasy.ch/www/tools.html等网站进行查询,并和自己的同类研究进行对比分析。
Genomic Solution可以为研究者提供除质谱外的所有蛋白质组学研究工具,包括二维电泳系统,成像系统及分析软件,胶切割系统,蛋白质消化浓缩工作站,点样工作站等;同时还可以提供相关试剂和消耗品。
LCM-二维电泳-质谱的技术路线是典型的一条蛋白质组学研究的技术路线,除此以外,LCM-抗体芯片也是一条重要的蛋白质组学研究的技术路线。即通过LCM技术获得感兴趣的细胞类型,制备细胞蛋白质样品,蛋白质经荧光染料标记后和抗体芯片杂交,从而可以比较两种样品蛋白质表达的异同。Clontech最近开发了一张抗体芯片,可以对378种膜蛋白和胞浆蛋白进行分析。该芯片同时配合了抗体芯片的全部操作过程的重要试剂,包括蛋白质制备试剂,蛋白质的荧光染料标记试剂,标记体系的纯化试剂,杂交试剂等。
对于蛋白质相互作用的研究,酵母双杂交和噬菌体展示技术无疑是很好的研究方法。Clontech开发的酵母双杂交系统和NEB公司开发的噬菌体展示技术可供研究者选用。
关于蛋白质组的研究,也可以将蛋白质组的部分或全部种类的蛋白质制作成蛋白质芯片,这样的蛋白质芯片可以用于蛋白质相互作用研究,蛋白表达研究和小分子蛋白结合研究。 Science,Vol,293,Issue 5537,2101-2105,September 14,2001发表了一篇关于酵母蛋白质组芯片的论文。该文主要研究内容为:将酵母的5800个ORF表达成蛋白质并进行纯化点样制作芯片,然后用该芯片筛选钙调素和磷脂分子的相互作用分子。
最后有必要指出的是,传统的蛋白质研究注重研究单一蛋白质,而蛋白质组学注重研究参与特定生理或病理状态的所有的蛋白质种类及其与周围环境(分子)的关系。因此蛋白质组学的研究通常是高通量的。适应这个要求,蛋白质组学相关研究工具通常都是高度自动化的系统,通量高而速度快,配合相应分析软件和数据库,研究者可以在最短的时间内处理最多的数据。