第 5章 反馈放大电路
5.1 反馈的基本概念与分类
一,基本概念
(一)反馈的定义
反馈是指将输出量的一部分或全部, 按一定的方式送回
到输入回路, 来影响输入量 ( 电压或电流 ) 的一种连接方式
净输入量
i
o
o x
xA
?
??
??
开环增益
i
o
of x
xA
?
?? ? 闭环增益
0x
xk f
f ?
??
?
反馈系数 共有四种不同的单位
放大电路
反馈网络
ix?
ix??
0x?
fx?
混合 取样
总输入量 反馈信号
输出信号
一,基本概念
(二)电路中的反馈形式
1,反馈与反馈通路
( 1) 我们判断一个电路是否有反馈, 是通过分析它是否存
在反馈通路而进行的, 而反馈通路是跨接在输出和输入间的
网络 。
( 2) 若电路中不存在反馈 —— 开环
v I
v O
+
-
R L
v I
v O
+
-
R L
R 2
R 1
反馈通路
(反馈网络)
信号的正向传输
( 3)若电路中存在反馈 —— 闭环
hfeib
ic
vce
Ib
vbe hrevce
hie
hoe
内部反馈
外部反馈
2、交流反馈与直流反馈
若反馈信号中只包含直流成份 —— 直流反馈
若反馈信号中只包含交流成份 —— 交流反馈
3、内部反馈与外部反馈
4、本级反馈与级间反馈
一,基本概念
(二)电路中的反馈形式
fii xxx ???
5、正反馈与负反馈
fii xxx ???
ix?fx
—— 正反馈,使 加强,使放大倍数增加
ix?fx
—— 负反馈,使 减小,使放大倍数降低
一,基本概念
(二)电路中的反馈形式
X o 基本放大
A 电路
X i’
反馈网络
F
X f
–
+X i
5.1.1 负反馈的一般表达式
一,反馈的表示方法
(一)方框图
信号源
输出信号
反馈放大电路
的输入信号
反馈信号
基本放大电路的输入
信号(净输入信号)
X o 基本放大
A 电路
X i’
反馈网络
F
X f
–
+X iX s 变换网络 K
i
o
X
XA
?? ?
??
o
f
X
XK
f ?
??
? ioF X
XA
?
?? ?
信号的正向传输
信号的反向传输信号在反馈网络
中的正向传输
信号在基本放大电
路中的反向传输
一,反馈的表示方法
(一)方框图
X o 基本放大
A 电路
X i’
反馈网络
F
X f
–
+X iX s 变换网络 K
一,反馈的表示方法
(一)方框图
单向化
信号的正向传输
信号的反向传输
X o 基本放大
A 电路
X i’
反馈网络
F
X f
–
+X iX s 变换网络 K
三个假定
1、与流经基本放大器的正向传输信号
相比,通过反馈网络的正向传输信号
(直接传输),可以忽略不计。
2、与反馈网络的反向传输信号相比,通过基本放大器的反向
传输信号(内部反馈)可以忽略不计。
3、反馈网络的反馈系数 F与信号源内阻 Rs及负载电阻 RL无关。
X f
–
F
X o
A
+ X i X i
'
i
o
F X
XA
?
?? ?
fi
o
XX
X
??
?
??? T
A
KA
A
KXAX
X
ff
?
?
??
?
????
?
?????? 11oo
o
/
2,闭环增益的一般表达式
fkA
AA
??
??
?? 1F
即
一,反馈的表示方法
(二) 表达式推导
fii xxx ??? ???
1、正反馈:
负反馈:
fii xxx ??? ???
其中 称为环路增益
fkA??
TKAF f ???? ???? 11 为增加反馈后,放大器的增益下降的倍数,叫做反馈深度,
3,反馈深度的讨论
一般负反馈
称为反馈深度
fkAF ???? 1fKA
AA
??
??
?? 1F
时,11 1 ?? fKA ??)(, F AA ?? ?
时,11 2 ??? fKA ??)(
正反馈时,11 3 ??
fKA ??)(, F AA ?? ?
自激振荡时,01 4 ??
fKA ??)(, F ??A?
X s
X f
–
F
X o
A K
+ X i X i
'
一,反馈的表示方法
(二) 表达式推导
深度负反馈
KAf
1??
5.1.2反馈的类型与判断
二、根据输入输出连接方式的不同,反馈可以分为四种类型
电压并联反馈电流串联反馈 电流并联反馈电压串联反馈
一、反馈的分类,
正反馈与负反馈
负反馈具有自动调节的作用,这种作用可以克服外界不稳定因素的
影响,自动的使输出信号维持稳定,改善放大器的频率响应、减小放大
器的非线性失真,按照要求改变放大器的输入和输出电阻
正反馈不但没有自动的调节作用,反而使放大器的性能恶化,破坏
放大器的正常的工作,在放大器中要力争避免。
判断电路中反馈的正、负极性用瞬时极性法:
( 1) 按中频段考虑, 即不考虑电路中所有的电容对相位的影响 。
( 2) 用正, 负号 ( +,-) 或箭头 ( ↑,↓) 表示电路中各关键点对
,地, 的电位的瞬时极性 ( 或瞬时变化 ), 这种表示要符合放大
器的基本原理 。
共射极放大器:集电极与基极电位反相;
共基极放大器:集电极与发射极电位同相;
共集极放大器:发射极与基极电位同相;
集成运放电路:看 xf是加在同相端还是反相端
( 3) 要逐级进行 。 最后看反馈到输入端的信号的瞬时极性, 若与
原输入信号的位相相同, 则为正反馈, 若与原输入信号的位相相
反, 则为负反馈 。
三、正、负反馈的判断的方法
正反馈与负反馈判断举例
(+)
(+) (-) (-)
(-)
反馈通路负反馈 负反馈
(+) (+)
(-)
(-)
(-)
净输入量
反馈通路
v I
v O
-
+
R LR 2
R 1
(+) (+)
(-)
(-)
净输入量
正反馈
v O
-
+
R 4
R 5
R 3
-
+v I
R 1
R 2
反馈通路
级间反馈通路
(+) (+)
(+)
(+)
(-)
(-)
净输入量
级间负反馈
反馈通路本级反馈通路
正反馈与负反馈判断举例
v I
v O
-
+
C 2
C 1
R 1
R 2
(+) (+)
(+)
(+)
交、直流负反馈
(+)
交流正反馈
交、直流反馈判断举例
负反馈对放大器性能的影响同反馈的类型有关, 当考虑
到信号源和负载时, 负反馈放大器包含四个部分:
信号源
Ug
基本放大器
A
反馈网络
F
输入端:反馈信号在输入端的联接分为 串联 和 并联 两种方式 。
输出端:反馈信号在输出端分为取 电压 和取 电流 两种方式 。
四、输入、输出端的反馈形式的判断
输入端的判断可以使用结点法和定义法
输出端的判断使用短路法或者开路法
反馈信号与输出电压成正比 —— 电压反馈;
反馈信号与输入信号串联 —— 串联反馈;在输入端以电
压的形式相加减。
反馈信号与输出电流成正比 —— 电流反馈;
反馈信号与输入信号并联 —— 并联反馈;在输入端以电
流的形式相加减。
1、输入端判断的定义法
结点法:
反馈网络与输入网络在输入端 没有结点 为电压反馈,
否则为电流反馈。
iX?
并联:反馈量 和
fX?
输入量
接于同一输入端 。
fX
?
iX
?
fX
?
iX
?
( 1)、取样方式的判断 —— 输出短路法
将放大器输出端短路,看反馈信号是否存在
若存在 —— 电流反馈 不存在 —— 电压反馈
接于不同的输入端 。
iX?
串联:反馈量 和
fX?
输入量
fX
?
iX
?
fX
?
iX
?
2、输出端的反馈的判断
( 2)、取样方式的判断 —— 输出开路法
将放大器输出端开路,看反馈信号是否存在
若存在 —— 电压反馈 不存在 —— 电流反馈
1、电压串联负反馈
(+)
(-) (+)
(+)
(-)
RfR
e1 Re1Rf
A
kf
0x?
特点:
( 1)该电路为电压串联负反馈
若取样为电压,则 以电压的形
式出现。
ix? ix?? f
x?若为串联反馈,则,, 以电压
的形式出现
Uf
Uf U‘i Uo
例子 1:
1、电压串联负反馈
(+)
(-) (+)
(+)
(-)
RfR
e1
0x?
特点:
( 1)该电路为电压串联负反馈
若取样为电压,则 以电压的形
式出现。
ix? ix?? f
x?若为串联反馈,则,, 以电压
的形式出现
o
fe
e
ff URR
RUx
?? ??? 1
1
( 2)反馈系数
fe
e
o
f
uu RR
R
U
Uk
??? 1
1∴
( 3)电压负反馈使输出电
压稳定
→Ube↑
UO↑
RL↓ →UO↓ →Uf↓
电压负反馈:稳定输
出电压
例子 1:
串联反馈:输入端电压求和( KVL)
Ui=U’i+Uf输入端有
U’i =Ui -Uf即
2、电压串联负反馈
R1 Rr
RL
(+)
(+)
(+)
Uf
Ui U‘i
Uo
3、电流串联负反馈
(+)
(+)
(+)
Ui
RL
RfES
RS
+RC A
K
U’i UO
Uf
(+)
(+)
I0
该电路为电流串联负反馈
0x?
ix? ix?? fx?
取样为电流,则 以电流的形式出现。
为串联反馈,则,, 以电压的
形式出现
3、电流串联负反馈
(+)
(+) RL
RfES
RS
+RC
fibeii uuuux ??????
fofCfeff RIRIRIux ?????
be
o
iu u
IA ? f
o
f
ri RI
UK ???
反馈系数
—— 负反馈
电流负反馈使输出电流稳定
β↑→IC↑→Uf↑→Ube↓→Ib↓
IC↓
4、电压并联负反馈
(+)
(-)
RL
Rf
ES
RS
+EC
A
K
4、电压并联负反馈 bfiii IIIIx ??????
f
o
f
obe
ff R
U
R
UUIx ?????
b
o
ui I
UA ?
fo
f
iu RU
IK 1???
反馈系数
—— 负反馈
电压负反馈使输出电压稳定
(+)
(-)
RL
Rf
ES
RS
+EC
0x?
ix? ix?? fx?
该电路为电压并联负反馈
若取样为电压,则 以电压
的形式出现。
若为并联反馈,则,,
以电流的形式出现
If
Ib
Ii
5、电流并联负反馈
(+) (-)
(-)
A
K
RL
A
Kf
该电路为电流并联负反馈
Re2RfRe1
bfiii IIIIx ??????
f
2efo
f
2e
f
2e1be
ff
R
R)II(
R
U
R
UU
Ix
?
???
?
??
1b
o
ii I
IA ?
fe
e
o
f
ii RR
R
I
IK
??? 2
1
反馈系数
—— 负反馈
电压负反馈使输出电压稳定
If
IbIi
o
f2e
2ef I
RR
RI
??
Re2RfRe1
5、电流并联负反馈
1,有无反馈
是否存在把输出回路和输入回路连接起来的支路。
2.交流反馈与直流反馈
反馈存在于直流或交流或交直流通路中。
3.正反馈与负反馈
瞬时极性法。
4,反馈的组态
输出端:并联取电压;串连取电流。
输入端:串联分压 ;并联分流。
反馈类型的判别总结
EEV?
CCV?
oV
SV
SR
OI
5.2 负反馈对放大电路性能的改善
一,反馈的表示方法
(一)方框图
信号源
输出信号
反馈放大电路
的输入信号
反馈信号
基本放大电路的输入
信号(净输入信号)
X o 基本放大
A 电路
X i’
反馈网络
F
X f
–
+X iX s 变换网络 K
i
o
X
XA
?? ?
??
o
f
X
XK
F ?
??
? ioF X
XA
?
?? ?
(一) 提高增益的稳定性
闭环时
fKA
AA
??
??
?? 1F
则
2
F
1
1
)( fAKdA
dA
??
只考虑幅值有
fKA
AA
??? 1F
A
dA
KAA
dA
f
??? ?1 1
F
F
即闭环增益相对变化量比开环减小了 1+Akf倍
另一方面 在深度负反馈条件下
fK
A ?? 1F ?
即闭环增益只取决于反馈网络 。 当反馈网络由稳定的
线性元件组成时, 闭环增益将有很高的稳定性 。
二,负反馈对放大器性能的改善
例,1+Akf=100时, A=1000± 10% 即 dA/A=10%
则 Af=10± 0.1%
(二) 减少非线性失真
二,负反馈对放大器性能的改善
A
A
K
大
小
大
小
大
小
大
小
若输入信号本身就是失真波形,是不能靠引入负反馈来改
善的。只有放大器内部所产生的非线性失真用负反馈改善
才有效。
ov
iv
典型的电压放大器的开环
传输特性曲线如图红线所示,
输出与输入之间的关系为非
线性的关系,在深度负反馈
的条件下,输出与输入的关
系近似为反馈系数的倒数,
可以近似看作一条直线,说
明输出与输入几乎成线性关
系,即减小了非线性失真。
二,负反馈对放大器性能的改善
(二) 减少非线性失真
(三) 抑制噪声和干扰 (能够抑制反馈环内的噪声)
二,负反馈对放大器性能的改善
注意:
1、放大电路引入负反馈后,信噪比并没有提高
2、若干扰或噪声与输入信号同时由外界引入,靠负反
馈无济于事。
sv nv ov
1vA 1v
A 2vA ov
sv
nv
vfK
n
S
V
V
N
S
?
?
?
VFVV
Vn
VFVV
VVSo KAA AVKAA AAVV ??? ????? ????
21
2
21
21 11 ????
2V
n
S A
V
V
N
S ?
?
?
?
A
?
开环幅频响应
)( fAk?? 1HHF ??
上限频率扩展 1+AK倍
fAk?
?
1
L
LF
??
下限频率降低 1+Akf倍
闭环幅频响应
H? HF?
FA
(四) 扩展频带
二,负反馈对放大器性能的改善
因为 Af=A/F,成比例减少
引入负反馈后使通频带扩展了 F倍
(五) 对输入电阻和输出电阻的影响
二,负反馈对放大器性能的改善
1、混合对输入电阻的影响
( 1)串联负反馈使输入电阻增加
Rif
ui' Ri
ui
uf
(+)
(-)
(+)
(-)
iI?
Ii
0?fu ii uu ??
ii II ??
i
i
i
i
i i
u
i
uR
?
???
fii uuu ???
ii II ??
i
fi
i
i
if i
uu
i
uR
?
????
ivfv
i
ivfvi
if
ivfvOfvf
RAK
i
uAKu
R
uAKuKu
)( ??
?
???
?
???
1
igfr
i
igfri
if
igfrOfrf
RAK
i
uAKu
R
uAKiKu
)( ??
?
???
?
???
1
ifif RAKR )( ?? 1
无反馈时:
∴
引入串联负反馈后:
∴
若取样是电压:则
若取样是电流:则
结论:
(五) 对输入电阻和输出电阻的影响
二,负反馈对放大器性能的改善
1、混合对输入电阻的影响
( 2)并联负反馈使输入电阻减小
Rif
ui' Riui
Ii
0if ? ii uu ??
ii uu ??
i
i
i
i
i i
u
i
uR
?
???
fii iii ???
ii ii ??
fi
i
i
i
if ii
u
i
uR
??
???
Rfg
i
iRfgi
i
if
iRfgOfgf
AK
R
iAKi
u
R
iAKuKi
?
?
???
?
?
???
1
ifi
i
iifii
i
if
iifiofif
AK
R
iAKi
u
R
iAKiKi
?
?
???
?
?
???
1
)/( AKRR fiif ?? 1
无反馈时:
∴
引入并联负反馈后:
∴
若取样是电压:则
若取样是电流:则
结论:
fI
iI?
(五) 对输入电阻和输出电阻的影响
二,负反馈对放大器性能的改善
2、取样对输出电阻的影响
( 1)电压负反馈使输出电阻减小
电压串联负反馈的情况
Io
fi uu ???
此时:
Avt为不考虑 RL时基本放大器
的电压增益
在不考虑 F对 I0的分流
的情况下,
ui' Ro
uf
(+)
(-)
(+)
(-)
Avtui‘
uo
000
00
000
UFARI
uARI
uARIU
fvvt
fvt
ivt
??
??
???
fvut FA
RIU
?? 1
00
0
fvvt
f kA
R
I
UR
??? 1
0
0
0
0
(五) 对输入电阻和输出电阻的影响
二,负反馈对放大器性能的改善
2、取样对输出电阻的影响
( 1)电压负反馈使输出电阻减小
电压并联负反馈的情况
Io
fi ii ??? )/( AKRR foof ?? 1
此时:
Art为不考虑 RL时基本放大
器的互阻增益
在不考虑 F对 I0的分流
的情况下,
结论:
000
00
000
UKARI
iARI
iARIU
fgrt
frt
irt
??
??
???
fgrt KA
RIU
?? 1
00
0
fgrt
f KA
R
I
UR
??? 1
0
0
0
0
fI
iI?
Ro u
o
Artii‘
(五) 对输入电阻和输出电阻的影响
二,负反馈对放大器性能的改善
2、取样对输出电阻的影响
( 2)电流负反馈使输出电阻增大
电流串联负反馈的情况
Io
fi uu ???
此时:
Agn为不考虑 RL时基本放大器
的电压增益
ui' R
o
uf
(+)
(-)
(+)
(-)
uo
Agnui‘
0
0
0
0
0
0
ikA
R
u
uA
R
u
i
frgn
ign
??
???
)( gnfr AKR
ui
?? 10
0
0
)( rnfgf AKRiuR ??? 10
0
0
0
在忽略反馈网络上的
压降的情况下:
即
∴
(五) 对输入电阻和输出电阻的影响
二,负反馈对放大器性能的改善
2、取样对输出电阻的影响
( 2)电流负反馈使输出电阻增大
电流并联负反馈的情况
Io
fi ii ???
)1( KARR oof ??
此时:
Ain为不考虑 RL时基本放大
器的电流增益 结论:
fI
iI?
Ro uo
Ainii‘
在忽略反馈网络上的
压降的情况下:
即
0
0
0
0
0
0
iKA
R
u
iA
R
u
i
fiin
iin
??
???
)( infi AKR
ui
?? 10
0
0
)( rnfgf AKRiuR ??? 10
0
0
0
∴
(六) 为改善性能引入负反馈的一般原则
? 要稳定直流量 —— 引直流负反馈
? 要稳定交流量 —— 引交流负反馈
? 要稳定输出电压 —— 引电压负反馈
? 要稳定输出电流 —— 引电流负反馈
? 要增大输入电阻 —— 引串联负反馈
? 要减小输入电阻 —— 引并联负反馈
二,负反馈对放大器性能的改善
说明:引入负反馈虽然可以改善电路的性能,然而,若处
理不当,则电路将产生自激振荡,使改善性能的愿望落空。
5.3 负反馈放大电路的分析方法
步骤 (1) 找出信号放大通路和反馈通路
(2) 用瞬时极性法判断正, 负反馈
(3) 判断交, 直流反馈
(4) 判断反馈阻态
(5) 标出输入量, 输出量及反馈量
(6) 估算深度负反馈条件下电路的
VFF AAK ???,、
任务,求出各项电路指标与电路中有关元件参数之间的关系
方法,1、微变等效电路分析法
2、方框图法
3、若为深度负反馈,则计算更简单
4、回路增益法
1、指导思想,将一个负反馈放大器划分为基本放大器和反馈
网络两部分,分别求出 A和 F,再利用公式求出 Af,Rof,Rif。
一,方框图计算法
开始
由方框图求 A和 F( 可以利用微变等效电路法 )
求反馈深度 F=1+KA
结束
2、流程图
按有关公式分别求
fA ifR ofR
判断反馈类型并确定,,, 的表达式
ix? ix?? fx? 0x?
4、反馈放大器划分为基本放大器和反馈网络的原理和原则
确定 A的原则:
( 1)除去反馈作用(即令输出和输入互不影响)
( 2)考虑反馈网络对输出和输入端的负载作用
确定 A的方法:
( 1)求输入回路:
若为电压反馈:则令 uo=0,即将输出端交流短路。
若为电流反馈:则令 io=0,即将输入端交流开路。
( 2)求输出回路:
若为并联反馈:则令 ui=0,即将输入端交流短路。
若为串联反馈:则令 ii=0,即将输入端交流开路。
一,方框图计算法
1、分析举例
例 1、电压并联负反馈
一,方框图计算法 +EC
Rc
Re RL
Rf
RL
fo
f
fg Ru
ik 1???
)////( '
'''
LcfL
f
be
L
bef
Lf
bef
bef
beb
Lb
i
o
r
RRRR
R
r
R
rR
RR
rR
rR
rI
RI
I
u
A
?
?
??
?
??
?
?
?
??
?
?
其中
1
???
cefo
bef
be
befi
bef
L
rfg
rRR
rR
r
rRR
rR
R
AKF
//
//
?
?
??
?
?
????
?
11
Lbef
Lf
bef
L
bef
Lf
r
rf
RrR
RR
rR
R
rR
RR
F
A
A
???
?
??
?
?
?
?
?
???
?
?
?
?
1
Lbef
be
rfg
i
if RrR
r
AK
RR
'?????? 1
Sbef
L
cef
rstfg
of
RrR
R
rR
Ak
RR
??
?
?
?
? "
//
?11
0
∴
则
RoRi
RCRf Rf
1、分析举例
例 2:电流串联负反馈
一,方框图计算法 +ECRc
Re1Rb2
Rb1
RLRb
RoR
i
Re1Re1
1
1
e
o
eo
o
f
fr RI
RI
I
uK ?????
11 ebeebeb
b
i
o
g RrRrI
I
u
iA
?
??
?
??
??
??
)(
1
1
1
1 111
ebe
ebe
ebe
e
gfr Rr
Rr
Rr
RAkF
?
???
?????
)( ??
cee
ebei
rRR
RrR
??
??
10
1
1
11
1
1
1
11
ebe
L
Lgf
i
Lo
i
o
uf
ebeebe
ebe
ebe
g
gf
Rr
R
RA
U
RI
u
u
A
RrRr
Rr
RrF
A
A
)(
)()(
?
?
?
?
?
?
??
??
???
?
??
??
?
?
??
?
?
?
???
cece
Sbebe
Sbebe
ogs nfroof
ebeebe
ebe
ebe
iif
rr
RRRr
RRRr
RAkFRR
RrRr
Rr
Rr
FRR
???
??
???
????
?????
?
??
??
//
//)(
)(
)()(
)(
1
1
11
1
1
1
1
1
1
?
?
?
∴
则
二,深度负反馈条件下的近似计算
1,深度负反馈的特点
即, 深度负反馈条件下, 闭环增益只与反馈网络有关
11 ??? KA ??
由于
kA
AA
??
??
?? 1F
则
KKA
A
???
? 1??
又因为
i
o
F X
XA
?
?? ?
o
f
X
XK
?
??
? if XX ?? ?
代入上式得
输入量近似等于反馈量
0fiid ??? XXX ??? 净输入量近似等于零
由此可得深度负反馈条件下, 基本放大电路, 两虚, 的概念
串联负反馈, 输入端电压求和 。
0fiid ??? VVV ???
0
i
id
id ?? r
VI ??
深度负反馈条件下
虚短
虚断
0fiid ??? III ???
0iidid ?? rIV ?? 虚短
虚断
并联负反馈, 输入端电流求和 。
0fiid ??? XXX ???
fI
?
iI
?
idI
?
idV
?
+
-
idI
?
idV
?+
-
fI
?
iI
?
fV
?
iV
?
idI
?
idV
?
+
-
fV
?
iV
?
idI
?
idV
?+
-
二,深度负反馈条件下的近似计算
1,深度负反馈的特点
2,各种反馈阻态的近似计算
( 1) 电压串联负反馈
二,深度负反馈条件下的近似计算
RfR
e1 10k100
0
1
1 u
RR
Ru
fe
e
f ??
1 0 1
1
1
1 ?
?? fe
e
f RR
RK
1 0 11 ?? FA uf
∴
2,各种反馈阻态的近似计算
二,深度负反馈条件下的近似计算
( 2) 电流串联负反馈
RL
RfES
RS
+RC
Lc
ifcfef
RIu
uRIRIu
???
???
0
e
c
f
o
f
r RI
u
I
uK ?????
e
gf RFA
11 ???
e
L
Lgf
i
Lo
i
o
uf
R
R
RA
u
RI
u
u
A
?
????
?
??
( 1)
( 2)
∴
而
e
L
i
o
Vf R
R
u
uA ?????
由 h参数等效电路法得
e
L
ebe
L
u R
R
Rr
RA ???
??
???
)( ?
?
1
( 3)
2,各种反馈阻态的近似计算
二,深度负反馈条件下的近似计算
( 3) 电压并联负反馈
RL
Rf
uS
RS
+EC
f
o
f R
uI ??
fo
f
gf Ru
iK 1???
f
fgf
o
rf RKi
uA ???? 1
s
f
s
rf
si
o
s
o
u s f R
R
R
A
RI
u
u
uA ?????
f
o
s
s
ifs
s
i
f
o
fif
R
u
R
u
RR
u
I
R
u
III
???
?
??
??? 而
s
f
s
o
u sf R
R
u
uA ???
( 1)
∴
( 2)
∴
2,各种反馈阻态的近似计算
二,深度负反馈条件下的近似计算
( 4) 电流并联负反馈
Re2RfRe1
2ef
2e2e
f
f2e2e
f
2e
f
if
RR
RI
R
)R//R(I
R
u
I
II
?
??
????
?
而
?
fe
see
sfsis RR
RRIRIRIu
????? 2
22
LCo RIu ??? 2
se
Lfe
s
o
u s f RR
RRR
u
uA
2
2 ???? )(
fe
e
o
f
i RR
R
I
IK
??? 2
2
2
21
e
fe
fi
if R
RR
KA
???
se
Lfe
s
L
if
si
Lo
s
o
u s f
RR
RRR
R
R
A
RI
RI
u
u
A
2
2
??
?
?
?
?
??
)(
∴
( 2)
∴
而
( 1)
例 求:
(1)大环阻态;
(2)二, 三级局部阻态;
闭环增益
闭环电压增益
0BE ?V?在深度负反馈条件下, 利用 虚短 和 虚断 可知
解,(1)电压并联负反馈
则反馈系数为
(3)深度负反馈下大环的闭
环电压增益 。
(2) T2 电流串联负反馈
T3 电流串联负反馈
T2和 T3级间电流串联正反馈
(3) 0
b1 ?I?
o
f
G V
IK
?
??
?
f
1
R?? i
o
RF I
VA
?
?? ?
G
1
F?? f
R??
s
o
VF V
VA
?
?? ?
s
i
i
o
V
I
I
V
?
?
?
? ??
s
RF
1
RA ??
?
s
f
R
R??
二,深度负反馈条件下的近似计算
2,各种反馈阻态的近似计算
二,深度负反馈条件下的近似计算
小结:
( 1)引入深度电压负反馈后,Af与管子的参数无关,与 RL无
关。
引入深度电流负反馈后,Af与管子的参数无关,与 RL有
关。
0?ofR
??ofR
??ifR
0?ifR
( 2)深度电压负反馈:
深度电流负反馈:
深度串联负反馈:
深度并联负反馈:
5.4 负反馈放大电路的稳定问题
一,自激及稳定工作条件
1,自激振荡现象
X o基本放大
A电路
X id
X f
–
+X i
反馈网络
F
在不加任何输
入信号的情况下,
放大电路仍会产生
一定频率的信号输
出 。
2,产生原因
在高频区或低频区产生的 附加相移 达到 180?,使中
频区的负反馈在高频区或低频区变成了正反馈, 当满足了一
定的幅值条件时, 便产生自激振荡 。
FA ??和
反馈深度
时,01 ?? kA ??
3,自激振荡条件
自激振荡
即 1??KA ?? 为环路增益)( KA ??
V f
反馈网络
F
基本放大电路
A
V o
–1
V id
又
)()()()( ?????? ka ???? KAKA ????
得自激振荡条件
1kk ?? )()( ?? KA ??
????? 1 8 012kkka )()()( n????
幅值条件
相位条件 ( 附加相移 )
注:输入端求和的相位 ( -1) 不包含在内
KA
AA
??
??
?? 1F
闭环增益
5.4 负反馈放大电路的稳定问题
一,自激及稳定工作条件
3,自激振荡条件
V f
反馈网络
F
基本放大电路
A
V o
–1
V id
得自激振荡条件
1kk ?? )()( ?? KA ??
????? 1 8 012kkka )()()( n????
5.4 负反馈放大电路的稳定问题
一,自激及稳定工作条件
说明:
( 1) 一级或两级负反馈放大电路是稳定的, 三级或三级以上
的负反馈电路, 在深度负反馈的条件下, 由可能产生自激振荡 。
( 2) 为使负反馈放大器能够稳定地工作, 必须设法破坏自激
振荡的条件
?)(a r c t g 12 ??? nAK ??
1?KA ??
1?KA ??在 时
?)(a r c t g 12 ??? nAK ??在 时
使
使
4,稳定工作条件
破坏自激振荡条件
1?KA ??
??? 1 8 0ka ??
1?KA ??
??? 1 8 0ka ??
或
1m ?? GKA ??
??? 1 8 0ka ??
1?KA ??
???? 180mka ???
或写为
其中 Gm——幅值裕度, 一般要求 Gm? -10dB
?m——相位裕度, 一般要求 ?m? 45?
保证可靠稳定,
留有余地 。
ω180ω0
φm相位裕度
Gm增益裕度
5.4 负反馈放大电路的稳定问题
一,自激及稳定工作条件
5,负反馈放大电路稳定性分析
KAKA ?
??? 1202020 lglglg ??
环路增益的幅频响应写为
一般 与频率无关,K? 则
K?
120 lg 的幅频响应是一条水平线
利用波特图分析
关键作出 A? 的幅频响应和相频响应波特图
K?
120 lg水平线 A?lg20 与 的交点为
K?
120 lg A?lg20 ?
1?KA ??
即该点满足
5.4 负反馈放大电路的稳定问题
一,自激及稳定工作条件
5,负反馈放大电路稳定性分析
(2) 作
k?
120 lg 水平线
判断稳定性方法
(1) 作出 A? 的幅频响应和相频响应波特图
k?
120 lg
在水平线
A?lg20 与
的交点作垂线交相频响应曲线的一点
(3) 判断是否满足相位裕度 ?m? 45?
若该点
?? 135 a? 满足相位裕度, 稳定;否则不稳定 。
在相频响应的 点处作垂线交 于 P点?? 135
a? A?lg20
若 P点在 水平线之下, 稳定;否则不稳定 。
k?
120 lg
或
5.4 负反馈放大电路的稳定问题
一,自激及稳定工作条件
5,负反馈放大电路稳定性分析 基本放大电 1 点?KA ??
基本放大 增大 k?
5.4 负反馈放大电路的稳定问题
一,自激及稳定工作条件
稳定区
不稳定区
P点交在 的 -20dB/十倍频程处, 放大电路是稳定的 。
A?lg20
反馈深度越深,
越容易自激 。
K?
越大, 水平线
K
120 lg
容易自激
k?
越大, 表明
反馈深度越深
下移, 越
6、频率补偿技术
一、频率补偿的基本思想
将电路的各个极点的间距拉开,特别使主极点和相
近的极点电的间距拉大,可以按预定的目标改变相频相
应,并有效地增加环路增益。
补偿实现:修改一个补偿的极点来实现
思考
如果 在 0dB线以上只有一个转折频率, 则无论反
馈深度如何, 电路都能稳定工作, 对吗? ( 假设 为无源网
络 )
A?lg20
F?
k?
最大为 1,即
dB 0120 ?K?lg
0dB线以上只有一个转折频率, 则 在 0dB线以上的
A?lg20
斜率为 -20dB/十倍频程 。
无论反馈深度如何, P点都交在 的 -20dB/十倍频程处,
放大电路是稳定的 。 A
?lg20
5.4 负反馈放大电路的稳定问题
一,自激及稳定工作条件
简单的电容补偿技术
1p? 2p? 3p?d?0d?
)(dbAvd
ivdA
fk
120 lg
1、滞后电容补偿
f
dpV D I KA
1202020
2 lg/lglg ?? ??
改变第一个极点的频率
Kf等于 1或小于 1的时,集成运算放大器始终工作在稳定的
状态,这时的补偿叫做全补偿或者单位增益补偿。
)( ??? CCRRC dp ????
11
1
补偿后,与 相交的
增益线降下移,最大下
移到 KF=1的点,表明为
保证放大器稳定工作时
的容许的最大的电压反
馈系数相应的增大。
2p?
例 1:已知集成运放的中频增益为 105,三个极点的频率分别为 200k,2M,20M,
产生第一个极点的等效阻抗为 200K,降其连接成同向放大器,为保证放大器的
正常工作采用了简单的电容补偿技术。( 1)未补偿前提供的,同向放大器提供
的最小增益是多少。( 2)若要求同向放大器提供的增益为 10,试求所需要的补
偿电容。( 3)若要求同向放大器提供的增益为 1,试求所需要的补偿电容。
1p? 2p? 3p?d?0d?
)(dbAvd
ivdA
fk
120 lg
uF
P
KA
kA
A
d
Vd
p
dfVf
Vf
4C
3
40Cp4
R
1
C
P44
R
1
CC1 0 02
10102
10
db201
S
12p
1
1
1
fV
2
V
4
=
同理:
==
=+=
=时,当
的下降端,
十倍频程未补偿前:相交于解:
)(
.
.
.)(
/)(
m i n
??
???
???
?
?
?
?
?
?
?
?
密勒电容补偿技术
利用密勒倍增效应实现相
位的补偿的技术。
将电路的各个极点的间
距拉开,特别使主极点和相
近的极点电的间距拉大,相
应的- 20db/十倍的频程的
线段加长,使反馈系数相应
的增大,可以按预定的目标
改变相频相应,并有效地增
加环路增益。
o45?
o90?
o135?
o180?
o80?
dBfA )(
f
f
)(fA?
超前补偿技术
简单的电容补偿是以压低第一
个极点来满足相位裕量的要求,
是以牺牲上限频率为代价,如果
要求补偿后不仅要满足相位裕量,
同时要满足上限频率可以使用超
前相位补偿
增加一个零点的方法,消除
第二个极点使- 20db/10倍频
程的线拉长,使第三个极点
变成第二个极点,实现补偿。
一般的方法是在反馈电阻上并接电容的方法。
第五章
结束
5.1 反馈的基本概念与分类
一,基本概念
(一)反馈的定义
反馈是指将输出量的一部分或全部, 按一定的方式送回
到输入回路, 来影响输入量 ( 电压或电流 ) 的一种连接方式
净输入量
i
o
o x
xA
?
??
??
开环增益
i
o
of x
xA
?
?? ? 闭环增益
0x
xk f
f ?
??
?
反馈系数 共有四种不同的单位
放大电路
反馈网络
ix?
ix??
0x?
fx?
混合 取样
总输入量 反馈信号
输出信号
一,基本概念
(二)电路中的反馈形式
1,反馈与反馈通路
( 1) 我们判断一个电路是否有反馈, 是通过分析它是否存
在反馈通路而进行的, 而反馈通路是跨接在输出和输入间的
网络 。
( 2) 若电路中不存在反馈 —— 开环
v I
v O
+
-
R L
v I
v O
+
-
R L
R 2
R 1
反馈通路
(反馈网络)
信号的正向传输
( 3)若电路中存在反馈 —— 闭环
hfeib
ic
vce
Ib
vbe hrevce
hie
hoe
内部反馈
外部反馈
2、交流反馈与直流反馈
若反馈信号中只包含直流成份 —— 直流反馈
若反馈信号中只包含交流成份 —— 交流反馈
3、内部反馈与外部反馈
4、本级反馈与级间反馈
一,基本概念
(二)电路中的反馈形式
fii xxx ???
5、正反馈与负反馈
fii xxx ???
ix?fx
—— 正反馈,使 加强,使放大倍数增加
ix?fx
—— 负反馈,使 减小,使放大倍数降低
一,基本概念
(二)电路中的反馈形式
X o 基本放大
A 电路
X i’
反馈网络
F
X f
–
+X i
5.1.1 负反馈的一般表达式
一,反馈的表示方法
(一)方框图
信号源
输出信号
反馈放大电路
的输入信号
反馈信号
基本放大电路的输入
信号(净输入信号)
X o 基本放大
A 电路
X i’
反馈网络
F
X f
–
+X iX s 变换网络 K
i
o
X
XA
?? ?
??
o
f
X
XK
f ?
??
? ioF X
XA
?
?? ?
信号的正向传输
信号的反向传输信号在反馈网络
中的正向传输
信号在基本放大电
路中的反向传输
一,反馈的表示方法
(一)方框图
X o 基本放大
A 电路
X i’
反馈网络
F
X f
–
+X iX s 变换网络 K
一,反馈的表示方法
(一)方框图
单向化
信号的正向传输
信号的反向传输
X o 基本放大
A 电路
X i’
反馈网络
F
X f
–
+X iX s 变换网络 K
三个假定
1、与流经基本放大器的正向传输信号
相比,通过反馈网络的正向传输信号
(直接传输),可以忽略不计。
2、与反馈网络的反向传输信号相比,通过基本放大器的反向
传输信号(内部反馈)可以忽略不计。
3、反馈网络的反馈系数 F与信号源内阻 Rs及负载电阻 RL无关。
X f
–
F
X o
A
+ X i X i
'
i
o
F X
XA
?
?? ?
fi
o
XX
X
??
?
??? T
A
KA
A
KXAX
X
ff
?
?
??
?
????
?
?????? 11oo
o
/
2,闭环增益的一般表达式
fkA
AA
??
??
?? 1F
即
一,反馈的表示方法
(二) 表达式推导
fii xxx ??? ???
1、正反馈:
负反馈:
fii xxx ??? ???
其中 称为环路增益
fkA??
TKAF f ???? ???? 11 为增加反馈后,放大器的增益下降的倍数,叫做反馈深度,
3,反馈深度的讨论
一般负反馈
称为反馈深度
fkAF ???? 1fKA
AA
??
??
?? 1F
时,11 1 ?? fKA ??)(, F AA ?? ?
时,11 2 ??? fKA ??)(
正反馈时,11 3 ??
fKA ??)(, F AA ?? ?
自激振荡时,01 4 ??
fKA ??)(, F ??A?
X s
X f
–
F
X o
A K
+ X i X i
'
一,反馈的表示方法
(二) 表达式推导
深度负反馈
KAf
1??
5.1.2反馈的类型与判断
二、根据输入输出连接方式的不同,反馈可以分为四种类型
电压并联反馈电流串联反馈 电流并联反馈电压串联反馈
一、反馈的分类,
正反馈与负反馈
负反馈具有自动调节的作用,这种作用可以克服外界不稳定因素的
影响,自动的使输出信号维持稳定,改善放大器的频率响应、减小放大
器的非线性失真,按照要求改变放大器的输入和输出电阻
正反馈不但没有自动的调节作用,反而使放大器的性能恶化,破坏
放大器的正常的工作,在放大器中要力争避免。
判断电路中反馈的正、负极性用瞬时极性法:
( 1) 按中频段考虑, 即不考虑电路中所有的电容对相位的影响 。
( 2) 用正, 负号 ( +,-) 或箭头 ( ↑,↓) 表示电路中各关键点对
,地, 的电位的瞬时极性 ( 或瞬时变化 ), 这种表示要符合放大
器的基本原理 。
共射极放大器:集电极与基极电位反相;
共基极放大器:集电极与发射极电位同相;
共集极放大器:发射极与基极电位同相;
集成运放电路:看 xf是加在同相端还是反相端
( 3) 要逐级进行 。 最后看反馈到输入端的信号的瞬时极性, 若与
原输入信号的位相相同, 则为正反馈, 若与原输入信号的位相相
反, 则为负反馈 。
三、正、负反馈的判断的方法
正反馈与负反馈判断举例
(+)
(+) (-) (-)
(-)
反馈通路负反馈 负反馈
(+) (+)
(-)
(-)
(-)
净输入量
反馈通路
v I
v O
-
+
R LR 2
R 1
(+) (+)
(-)
(-)
净输入量
正反馈
v O
-
+
R 4
R 5
R 3
-
+v I
R 1
R 2
反馈通路
级间反馈通路
(+) (+)
(+)
(+)
(-)
(-)
净输入量
级间负反馈
反馈通路本级反馈通路
正反馈与负反馈判断举例
v I
v O
-
+
C 2
C 1
R 1
R 2
(+) (+)
(+)
(+)
交、直流负反馈
(+)
交流正反馈
交、直流反馈判断举例
负反馈对放大器性能的影响同反馈的类型有关, 当考虑
到信号源和负载时, 负反馈放大器包含四个部分:
信号源
Ug
基本放大器
A
反馈网络
F
输入端:反馈信号在输入端的联接分为 串联 和 并联 两种方式 。
输出端:反馈信号在输出端分为取 电压 和取 电流 两种方式 。
四、输入、输出端的反馈形式的判断
输入端的判断可以使用结点法和定义法
输出端的判断使用短路法或者开路法
反馈信号与输出电压成正比 —— 电压反馈;
反馈信号与输入信号串联 —— 串联反馈;在输入端以电
压的形式相加减。
反馈信号与输出电流成正比 —— 电流反馈;
反馈信号与输入信号并联 —— 并联反馈;在输入端以电
流的形式相加减。
1、输入端判断的定义法
结点法:
反馈网络与输入网络在输入端 没有结点 为电压反馈,
否则为电流反馈。
iX?
并联:反馈量 和
fX?
输入量
接于同一输入端 。
fX
?
iX
?
fX
?
iX
?
( 1)、取样方式的判断 —— 输出短路法
将放大器输出端短路,看反馈信号是否存在
若存在 —— 电流反馈 不存在 —— 电压反馈
接于不同的输入端 。
iX?
串联:反馈量 和
fX?
输入量
fX
?
iX
?
fX
?
iX
?
2、输出端的反馈的判断
( 2)、取样方式的判断 —— 输出开路法
将放大器输出端开路,看反馈信号是否存在
若存在 —— 电压反馈 不存在 —— 电流反馈
1、电压串联负反馈
(+)
(-) (+)
(+)
(-)
RfR
e1 Re1Rf
A
kf
0x?
特点:
( 1)该电路为电压串联负反馈
若取样为电压,则 以电压的形
式出现。
ix? ix?? f
x?若为串联反馈,则,, 以电压
的形式出现
Uf
Uf U‘i Uo
例子 1:
1、电压串联负反馈
(+)
(-) (+)
(+)
(-)
RfR
e1
0x?
特点:
( 1)该电路为电压串联负反馈
若取样为电压,则 以电压的形
式出现。
ix? ix?? f
x?若为串联反馈,则,, 以电压
的形式出现
o
fe
e
ff URR
RUx
?? ??? 1
1
( 2)反馈系数
fe
e
o
f
uu RR
R
U
Uk
??? 1
1∴
( 3)电压负反馈使输出电
压稳定
→Ube↑
UO↑
RL↓ →UO↓ →Uf↓
电压负反馈:稳定输
出电压
例子 1:
串联反馈:输入端电压求和( KVL)
Ui=U’i+Uf输入端有
U’i =Ui -Uf即
2、电压串联负反馈
R1 Rr
RL
(+)
(+)
(+)
Uf
Ui U‘i
Uo
3、电流串联负反馈
(+)
(+)
(+)
Ui
RL
RfES
RS
+RC A
K
U’i UO
Uf
(+)
(+)
I0
该电路为电流串联负反馈
0x?
ix? ix?? fx?
取样为电流,则 以电流的形式出现。
为串联反馈,则,, 以电压的
形式出现
3、电流串联负反馈
(+)
(+) RL
RfES
RS
+RC
fibeii uuuux ??????
fofCfeff RIRIRIux ?????
be
o
iu u
IA ? f
o
f
ri RI
UK ???
反馈系数
—— 负反馈
电流负反馈使输出电流稳定
β↑→IC↑→Uf↑→Ube↓→Ib↓
IC↓
4、电压并联负反馈
(+)
(-)
RL
Rf
ES
RS
+EC
A
K
4、电压并联负反馈 bfiii IIIIx ??????
f
o
f
obe
ff R
U
R
UUIx ?????
b
o
ui I
UA ?
fo
f
iu RU
IK 1???
反馈系数
—— 负反馈
电压负反馈使输出电压稳定
(+)
(-)
RL
Rf
ES
RS
+EC
0x?
ix? ix?? fx?
该电路为电压并联负反馈
若取样为电压,则 以电压
的形式出现。
若为并联反馈,则,,
以电流的形式出现
If
Ib
Ii
5、电流并联负反馈
(+) (-)
(-)
A
K
RL
A
Kf
该电路为电流并联负反馈
Re2RfRe1
bfiii IIIIx ??????
f
2efo
f
2e
f
2e1be
ff
R
R)II(
R
U
R
UU
Ix
?
???
?
??
1b
o
ii I
IA ?
fe
e
o
f
ii RR
R
I
IK
??? 2
1
反馈系数
—— 负反馈
电压负反馈使输出电压稳定
If
IbIi
o
f2e
2ef I
RR
RI
??
Re2RfRe1
5、电流并联负反馈
1,有无反馈
是否存在把输出回路和输入回路连接起来的支路。
2.交流反馈与直流反馈
反馈存在于直流或交流或交直流通路中。
3.正反馈与负反馈
瞬时极性法。
4,反馈的组态
输出端:并联取电压;串连取电流。
输入端:串联分压 ;并联分流。
反馈类型的判别总结
EEV?
CCV?
oV
SV
SR
OI
5.2 负反馈对放大电路性能的改善
一,反馈的表示方法
(一)方框图
信号源
输出信号
反馈放大电路
的输入信号
反馈信号
基本放大电路的输入
信号(净输入信号)
X o 基本放大
A 电路
X i’
反馈网络
F
X f
–
+X iX s 变换网络 K
i
o
X
XA
?? ?
??
o
f
X
XK
F ?
??
? ioF X
XA
?
?? ?
(一) 提高增益的稳定性
闭环时
fKA
AA
??
??
?? 1F
则
2
F
1
1
)( fAKdA
dA
??
只考虑幅值有
fKA
AA
??? 1F
A
dA
KAA
dA
f
??? ?1 1
F
F
即闭环增益相对变化量比开环减小了 1+Akf倍
另一方面 在深度负反馈条件下
fK
A ?? 1F ?
即闭环增益只取决于反馈网络 。 当反馈网络由稳定的
线性元件组成时, 闭环增益将有很高的稳定性 。
二,负反馈对放大器性能的改善
例,1+Akf=100时, A=1000± 10% 即 dA/A=10%
则 Af=10± 0.1%
(二) 减少非线性失真
二,负反馈对放大器性能的改善
A
A
K
大
小
大
小
大
小
大
小
若输入信号本身就是失真波形,是不能靠引入负反馈来改
善的。只有放大器内部所产生的非线性失真用负反馈改善
才有效。
ov
iv
典型的电压放大器的开环
传输特性曲线如图红线所示,
输出与输入之间的关系为非
线性的关系,在深度负反馈
的条件下,输出与输入的关
系近似为反馈系数的倒数,
可以近似看作一条直线,说
明输出与输入几乎成线性关
系,即减小了非线性失真。
二,负反馈对放大器性能的改善
(二) 减少非线性失真
(三) 抑制噪声和干扰 (能够抑制反馈环内的噪声)
二,负反馈对放大器性能的改善
注意:
1、放大电路引入负反馈后,信噪比并没有提高
2、若干扰或噪声与输入信号同时由外界引入,靠负反
馈无济于事。
sv nv ov
1vA 1v
A 2vA ov
sv
nv
vfK
n
S
V
V
N
S
?
?
?
VFVV
Vn
VFVV
VVSo KAA AVKAA AAVV ??? ????? ????
21
2
21
21 11 ????
2V
n
S A
V
V
N
S ?
?
?
?
A
?
开环幅频响应
)( fAk?? 1HHF ??
上限频率扩展 1+AK倍
fAk?
?
1
L
LF
??
下限频率降低 1+Akf倍
闭环幅频响应
H? HF?
FA
(四) 扩展频带
二,负反馈对放大器性能的改善
因为 Af=A/F,成比例减少
引入负反馈后使通频带扩展了 F倍
(五) 对输入电阻和输出电阻的影响
二,负反馈对放大器性能的改善
1、混合对输入电阻的影响
( 1)串联负反馈使输入电阻增加
Rif
ui' Ri
ui
uf
(+)
(-)
(+)
(-)
iI?
Ii
0?fu ii uu ??
ii II ??
i
i
i
i
i i
u
i
uR
?
???
fii uuu ???
ii II ??
i
fi
i
i
if i
uu
i
uR
?
????
ivfv
i
ivfvi
if
ivfvOfvf
RAK
i
uAKu
R
uAKuKu
)( ??
?
???
?
???
1
igfr
i
igfri
if
igfrOfrf
RAK
i
uAKu
R
uAKiKu
)( ??
?
???
?
???
1
ifif RAKR )( ?? 1
无反馈时:
∴
引入串联负反馈后:
∴
若取样是电压:则
若取样是电流:则
结论:
(五) 对输入电阻和输出电阻的影响
二,负反馈对放大器性能的改善
1、混合对输入电阻的影响
( 2)并联负反馈使输入电阻减小
Rif
ui' Riui
Ii
0if ? ii uu ??
ii uu ??
i
i
i
i
i i
u
i
uR
?
???
fii iii ???
ii ii ??
fi
i
i
i
if ii
u
i
uR
??
???
Rfg
i
iRfgi
i
if
iRfgOfgf
AK
R
iAKi
u
R
iAKuKi
?
?
???
?
?
???
1
ifi
i
iifii
i
if
iifiofif
AK
R
iAKi
u
R
iAKiKi
?
?
???
?
?
???
1
)/( AKRR fiif ?? 1
无反馈时:
∴
引入并联负反馈后:
∴
若取样是电压:则
若取样是电流:则
结论:
fI
iI?
(五) 对输入电阻和输出电阻的影响
二,负反馈对放大器性能的改善
2、取样对输出电阻的影响
( 1)电压负反馈使输出电阻减小
电压串联负反馈的情况
Io
fi uu ???
此时:
Avt为不考虑 RL时基本放大器
的电压增益
在不考虑 F对 I0的分流
的情况下,
ui' Ro
uf
(+)
(-)
(+)
(-)
Avtui‘
uo
000
00
000
UFARI
uARI
uARIU
fvvt
fvt
ivt
??
??
???
fvut FA
RIU
?? 1
00
0
fvvt
f kA
R
I
UR
??? 1
0
0
0
0
(五) 对输入电阻和输出电阻的影响
二,负反馈对放大器性能的改善
2、取样对输出电阻的影响
( 1)电压负反馈使输出电阻减小
电压并联负反馈的情况
Io
fi ii ??? )/( AKRR foof ?? 1
此时:
Art为不考虑 RL时基本放大
器的互阻增益
在不考虑 F对 I0的分流
的情况下,
结论:
000
00
000
UKARI
iARI
iARIU
fgrt
frt
irt
??
??
???
fgrt KA
RIU
?? 1
00
0
fgrt
f KA
R
I
UR
??? 1
0
0
0
0
fI
iI?
Ro u
o
Artii‘
(五) 对输入电阻和输出电阻的影响
二,负反馈对放大器性能的改善
2、取样对输出电阻的影响
( 2)电流负反馈使输出电阻增大
电流串联负反馈的情况
Io
fi uu ???
此时:
Agn为不考虑 RL时基本放大器
的电压增益
ui' R
o
uf
(+)
(-)
(+)
(-)
uo
Agnui‘
0
0
0
0
0
0
ikA
R
u
uA
R
u
i
frgn
ign
??
???
)( gnfr AKR
ui
?? 10
0
0
)( rnfgf AKRiuR ??? 10
0
0
0
在忽略反馈网络上的
压降的情况下:
即
∴
(五) 对输入电阻和输出电阻的影响
二,负反馈对放大器性能的改善
2、取样对输出电阻的影响
( 2)电流负反馈使输出电阻增大
电流并联负反馈的情况
Io
fi ii ???
)1( KARR oof ??
此时:
Ain为不考虑 RL时基本放大
器的电流增益 结论:
fI
iI?
Ro uo
Ainii‘
在忽略反馈网络上的
压降的情况下:
即
0
0
0
0
0
0
iKA
R
u
iA
R
u
i
fiin
iin
??
???
)( infi AKR
ui
?? 10
0
0
)( rnfgf AKRiuR ??? 10
0
0
0
∴
(六) 为改善性能引入负反馈的一般原则
? 要稳定直流量 —— 引直流负反馈
? 要稳定交流量 —— 引交流负反馈
? 要稳定输出电压 —— 引电压负反馈
? 要稳定输出电流 —— 引电流负反馈
? 要增大输入电阻 —— 引串联负反馈
? 要减小输入电阻 —— 引并联负反馈
二,负反馈对放大器性能的改善
说明:引入负反馈虽然可以改善电路的性能,然而,若处
理不当,则电路将产生自激振荡,使改善性能的愿望落空。
5.3 负反馈放大电路的分析方法
步骤 (1) 找出信号放大通路和反馈通路
(2) 用瞬时极性法判断正, 负反馈
(3) 判断交, 直流反馈
(4) 判断反馈阻态
(5) 标出输入量, 输出量及反馈量
(6) 估算深度负反馈条件下电路的
VFF AAK ???,、
任务,求出各项电路指标与电路中有关元件参数之间的关系
方法,1、微变等效电路分析法
2、方框图法
3、若为深度负反馈,则计算更简单
4、回路增益法
1、指导思想,将一个负反馈放大器划分为基本放大器和反馈
网络两部分,分别求出 A和 F,再利用公式求出 Af,Rof,Rif。
一,方框图计算法
开始
由方框图求 A和 F( 可以利用微变等效电路法 )
求反馈深度 F=1+KA
结束
2、流程图
按有关公式分别求
fA ifR ofR
判断反馈类型并确定,,, 的表达式
ix? ix?? fx? 0x?
4、反馈放大器划分为基本放大器和反馈网络的原理和原则
确定 A的原则:
( 1)除去反馈作用(即令输出和输入互不影响)
( 2)考虑反馈网络对输出和输入端的负载作用
确定 A的方法:
( 1)求输入回路:
若为电压反馈:则令 uo=0,即将输出端交流短路。
若为电流反馈:则令 io=0,即将输入端交流开路。
( 2)求输出回路:
若为并联反馈:则令 ui=0,即将输入端交流短路。
若为串联反馈:则令 ii=0,即将输入端交流开路。
一,方框图计算法
1、分析举例
例 1、电压并联负反馈
一,方框图计算法 +EC
Rc
Re RL
Rf
RL
fo
f
fg Ru
ik 1???
)////( '
'''
LcfL
f
be
L
bef
Lf
bef
bef
beb
Lb
i
o
r
RRRR
R
r
R
rR
RR
rR
rR
rI
RI
I
u
A
?
?
??
?
??
?
?
?
??
?
?
其中
1
???
cefo
bef
be
befi
bef
L
rfg
rRR
rR
r
rRR
rR
R
AKF
//
//
?
?
??
?
?
????
?
11
Lbef
Lf
bef
L
bef
Lf
r
rf
RrR
RR
rR
R
rR
RR
F
A
A
???
?
??
?
?
?
?
?
???
?
?
?
?
1
Lbef
be
rfg
i
if RrR
r
AK
RR
'?????? 1
Sbef
L
cef
rstfg
of
RrR
R
rR
Ak
RR
??
?
?
?
? "
//
?11
0
∴
则
RoRi
RCRf Rf
1、分析举例
例 2:电流串联负反馈
一,方框图计算法 +ECRc
Re1Rb2
Rb1
RLRb
RoR
i
Re1Re1
1
1
e
o
eo
o
f
fr RI
RI
I
uK ?????
11 ebeebeb
b
i
o
g RrRrI
I
u
iA
?
??
?
??
??
??
)(
1
1
1
1 111
ebe
ebe
ebe
e
gfr Rr
Rr
Rr
RAkF
?
???
?????
)( ??
cee
ebei
rRR
RrR
??
??
10
1
1
11
1
1
1
11
ebe
L
Lgf
i
Lo
i
o
uf
ebeebe
ebe
ebe
g
gf
Rr
R
RA
U
RI
u
u
A
RrRr
Rr
RrF
A
A
)(
)()(
?
?
?
?
?
?
??
??
???
?
??
??
?
?
??
?
?
?
???
cece
Sbebe
Sbebe
ogs nfroof
ebeebe
ebe
ebe
iif
rr
RRRr
RRRr
RAkFRR
RrRr
Rr
Rr
FRR
???
??
???
????
?????
?
??
??
//
//)(
)(
)()(
)(
1
1
11
1
1
1
1
1
1
?
?
?
∴
则
二,深度负反馈条件下的近似计算
1,深度负反馈的特点
即, 深度负反馈条件下, 闭环增益只与反馈网络有关
11 ??? KA ??
由于
kA
AA
??
??
?? 1F
则
KKA
A
???
? 1??
又因为
i
o
F X
XA
?
?? ?
o
f
X
XK
?
??
? if XX ?? ?
代入上式得
输入量近似等于反馈量
0fiid ??? XXX ??? 净输入量近似等于零
由此可得深度负反馈条件下, 基本放大电路, 两虚, 的概念
串联负反馈, 输入端电压求和 。
0fiid ??? VVV ???
0
i
id
id ?? r
VI ??
深度负反馈条件下
虚短
虚断
0fiid ??? III ???
0iidid ?? rIV ?? 虚短
虚断
并联负反馈, 输入端电流求和 。
0fiid ??? XXX ???
fI
?
iI
?
idI
?
idV
?
+
-
idI
?
idV
?+
-
fI
?
iI
?
fV
?
iV
?
idI
?
idV
?
+
-
fV
?
iV
?
idI
?
idV
?+
-
二,深度负反馈条件下的近似计算
1,深度负反馈的特点
2,各种反馈阻态的近似计算
( 1) 电压串联负反馈
二,深度负反馈条件下的近似计算
RfR
e1 10k100
0
1
1 u
RR
Ru
fe
e
f ??
1 0 1
1
1
1 ?
?? fe
e
f RR
RK
1 0 11 ?? FA uf
∴
2,各种反馈阻态的近似计算
二,深度负反馈条件下的近似计算
( 2) 电流串联负反馈
RL
RfES
RS
+RC
Lc
ifcfef
RIu
uRIRIu
???
???
0
e
c
f
o
f
r RI
u
I
uK ?????
e
gf RFA
11 ???
e
L
Lgf
i
Lo
i
o
uf
R
R
RA
u
RI
u
u
A
?
????
?
??
( 1)
( 2)
∴
而
e
L
i
o
Vf R
R
u
uA ?????
由 h参数等效电路法得
e
L
ebe
L
u R
R
Rr
RA ???
??
???
)( ?
?
1
( 3)
2,各种反馈阻态的近似计算
二,深度负反馈条件下的近似计算
( 3) 电压并联负反馈
RL
Rf
uS
RS
+EC
f
o
f R
uI ??
fo
f
gf Ru
iK 1???
f
fgf
o
rf RKi
uA ???? 1
s
f
s
rf
si
o
s
o
u s f R
R
R
A
RI
u
u
uA ?????
f
o
s
s
ifs
s
i
f
o
fif
R
u
R
u
RR
u
I
R
u
III
???
?
??
??? 而
s
f
s
o
u sf R
R
u
uA ???
( 1)
∴
( 2)
∴
2,各种反馈阻态的近似计算
二,深度负反馈条件下的近似计算
( 4) 电流并联负反馈
Re2RfRe1
2ef
2e2e
f
f2e2e
f
2e
f
if
RR
RI
R
)R//R(I
R
u
I
II
?
??
????
?
而
?
fe
see
sfsis RR
RRIRIRIu
????? 2
22
LCo RIu ??? 2
se
Lfe
s
o
u s f RR
RRR
u
uA
2
2 ???? )(
fe
e
o
f
i RR
R
I
IK
??? 2
2
2
21
e
fe
fi
if R
RR
KA
???
se
Lfe
s
L
if
si
Lo
s
o
u s f
RR
RRR
R
R
A
RI
RI
u
u
A
2
2
??
?
?
?
?
??
)(
∴
( 2)
∴
而
( 1)
例 求:
(1)大环阻态;
(2)二, 三级局部阻态;
闭环增益
闭环电压增益
0BE ?V?在深度负反馈条件下, 利用 虚短 和 虚断 可知
解,(1)电压并联负反馈
则反馈系数为
(3)深度负反馈下大环的闭
环电压增益 。
(2) T2 电流串联负反馈
T3 电流串联负反馈
T2和 T3级间电流串联正反馈
(3) 0
b1 ?I?
o
f
G V
IK
?
??
?
f
1
R?? i
o
RF I
VA
?
?? ?
G
1
F?? f
R??
s
o
VF V
VA
?
?? ?
s
i
i
o
V
I
I
V
?
?
?
? ??
s
RF
1
RA ??
?
s
f
R
R??
二,深度负反馈条件下的近似计算
2,各种反馈阻态的近似计算
二,深度负反馈条件下的近似计算
小结:
( 1)引入深度电压负反馈后,Af与管子的参数无关,与 RL无
关。
引入深度电流负反馈后,Af与管子的参数无关,与 RL有
关。
0?ofR
??ofR
??ifR
0?ifR
( 2)深度电压负反馈:
深度电流负反馈:
深度串联负反馈:
深度并联负反馈:
5.4 负反馈放大电路的稳定问题
一,自激及稳定工作条件
1,自激振荡现象
X o基本放大
A电路
X id
X f
–
+X i
反馈网络
F
在不加任何输
入信号的情况下,
放大电路仍会产生
一定频率的信号输
出 。
2,产生原因
在高频区或低频区产生的 附加相移 达到 180?,使中
频区的负反馈在高频区或低频区变成了正反馈, 当满足了一
定的幅值条件时, 便产生自激振荡 。
FA ??和
反馈深度
时,01 ?? kA ??
3,自激振荡条件
自激振荡
即 1??KA ?? 为环路增益)( KA ??
V f
反馈网络
F
基本放大电路
A
V o
–1
V id
又
)()()()( ?????? ka ???? KAKA ????
得自激振荡条件
1kk ?? )()( ?? KA ??
????? 1 8 012kkka )()()( n????
幅值条件
相位条件 ( 附加相移 )
注:输入端求和的相位 ( -1) 不包含在内
KA
AA
??
??
?? 1F
闭环增益
5.4 负反馈放大电路的稳定问题
一,自激及稳定工作条件
3,自激振荡条件
V f
反馈网络
F
基本放大电路
A
V o
–1
V id
得自激振荡条件
1kk ?? )()( ?? KA ??
????? 1 8 012kkka )()()( n????
5.4 负反馈放大电路的稳定问题
一,自激及稳定工作条件
说明:
( 1) 一级或两级负反馈放大电路是稳定的, 三级或三级以上
的负反馈电路, 在深度负反馈的条件下, 由可能产生自激振荡 。
( 2) 为使负反馈放大器能够稳定地工作, 必须设法破坏自激
振荡的条件
?)(a r c t g 12 ??? nAK ??
1?KA ??
1?KA ??在 时
?)(a r c t g 12 ??? nAK ??在 时
使
使
4,稳定工作条件
破坏自激振荡条件
1?KA ??
??? 1 8 0ka ??
1?KA ??
??? 1 8 0ka ??
或
1m ?? GKA ??
??? 1 8 0ka ??
1?KA ??
???? 180mka ???
或写为
其中 Gm——幅值裕度, 一般要求 Gm? -10dB
?m——相位裕度, 一般要求 ?m? 45?
保证可靠稳定,
留有余地 。
ω180ω0
φm相位裕度
Gm增益裕度
5.4 负反馈放大电路的稳定问题
一,自激及稳定工作条件
5,负反馈放大电路稳定性分析
KAKA ?
??? 1202020 lglglg ??
环路增益的幅频响应写为
一般 与频率无关,K? 则
K?
120 lg 的幅频响应是一条水平线
利用波特图分析
关键作出 A? 的幅频响应和相频响应波特图
K?
120 lg水平线 A?lg20 与 的交点为
K?
120 lg A?lg20 ?
1?KA ??
即该点满足
5.4 负反馈放大电路的稳定问题
一,自激及稳定工作条件
5,负反馈放大电路稳定性分析
(2) 作
k?
120 lg 水平线
判断稳定性方法
(1) 作出 A? 的幅频响应和相频响应波特图
k?
120 lg
在水平线
A?lg20 与
的交点作垂线交相频响应曲线的一点
(3) 判断是否满足相位裕度 ?m? 45?
若该点
?? 135 a? 满足相位裕度, 稳定;否则不稳定 。
在相频响应的 点处作垂线交 于 P点?? 135
a? A?lg20
若 P点在 水平线之下, 稳定;否则不稳定 。
k?
120 lg
或
5.4 负反馈放大电路的稳定问题
一,自激及稳定工作条件
5,负反馈放大电路稳定性分析 基本放大电 1 点?KA ??
基本放大 增大 k?
5.4 负反馈放大电路的稳定问题
一,自激及稳定工作条件
稳定区
不稳定区
P点交在 的 -20dB/十倍频程处, 放大电路是稳定的 。
A?lg20
反馈深度越深,
越容易自激 。
K?
越大, 水平线
K
120 lg
容易自激
k?
越大, 表明
反馈深度越深
下移, 越
6、频率补偿技术
一、频率补偿的基本思想
将电路的各个极点的间距拉开,特别使主极点和相
近的极点电的间距拉大,可以按预定的目标改变相频相
应,并有效地增加环路增益。
补偿实现:修改一个补偿的极点来实现
思考
如果 在 0dB线以上只有一个转折频率, 则无论反
馈深度如何, 电路都能稳定工作, 对吗? ( 假设 为无源网
络 )
A?lg20
F?
k?
最大为 1,即
dB 0120 ?K?lg
0dB线以上只有一个转折频率, 则 在 0dB线以上的
A?lg20
斜率为 -20dB/十倍频程 。
无论反馈深度如何, P点都交在 的 -20dB/十倍频程处,
放大电路是稳定的 。 A
?lg20
5.4 负反馈放大电路的稳定问题
一,自激及稳定工作条件
简单的电容补偿技术
1p? 2p? 3p?d?0d?
)(dbAvd
ivdA
fk
120 lg
1、滞后电容补偿
f
dpV D I KA
1202020
2 lg/lglg ?? ??
改变第一个极点的频率
Kf等于 1或小于 1的时,集成运算放大器始终工作在稳定的
状态,这时的补偿叫做全补偿或者单位增益补偿。
)( ??? CCRRC dp ????
11
1
补偿后,与 相交的
增益线降下移,最大下
移到 KF=1的点,表明为
保证放大器稳定工作时
的容许的最大的电压反
馈系数相应的增大。
2p?
例 1:已知集成运放的中频增益为 105,三个极点的频率分别为 200k,2M,20M,
产生第一个极点的等效阻抗为 200K,降其连接成同向放大器,为保证放大器的
正常工作采用了简单的电容补偿技术。( 1)未补偿前提供的,同向放大器提供
的最小增益是多少。( 2)若要求同向放大器提供的增益为 10,试求所需要的补
偿电容。( 3)若要求同向放大器提供的增益为 1,试求所需要的补偿电容。
1p? 2p? 3p?d?0d?
)(dbAvd
ivdA
fk
120 lg
uF
P
KA
kA
A
d
Vd
p
dfVf
Vf
4C
3
40Cp4
R
1
C
P44
R
1
CC1 0 02
10102
10
db201
S
12p
1
1
1
fV
2
V
4
=
同理:
==
=+=
=时,当
的下降端,
十倍频程未补偿前:相交于解:
)(
.
.
.)(
/)(
m i n
??
???
???
?
?
?
?
?
?
?
?
密勒电容补偿技术
利用密勒倍增效应实现相
位的补偿的技术。
将电路的各个极点的间
距拉开,特别使主极点和相
近的极点电的间距拉大,相
应的- 20db/十倍的频程的
线段加长,使反馈系数相应
的增大,可以按预定的目标
改变相频相应,并有效地增
加环路增益。
o45?
o90?
o135?
o180?
o80?
dBfA )(
f
f
)(fA?
超前补偿技术
简单的电容补偿是以压低第一
个极点来满足相位裕量的要求,
是以牺牲上限频率为代价,如果
要求补偿后不仅要满足相位裕量,
同时要满足上限频率可以使用超
前相位补偿
增加一个零点的方法,消除
第二个极点使- 20db/10倍频
程的线拉长,使第三个极点
变成第二个极点,实现补偿。
一般的方法是在反馈电阻上并接电容的方法。
第五章
结束