~ ?yvD ?Dy
? 2 ?
±s¥'
T
D'? ?
~ ?yvD ?Dy
M
°L??ê?f
D
f
¥ ó"
M
°L??
^?1
∫
2
1
)(
T
T
dttv
!
t8T°L?X?
)(tvv =
^
H
WW? ],[
21
TT
t¥B? ??f
O
0)( ≥tv pt8?
HW
=
üV¥
^?,
6BZ
?
^? VV
U1 )()(
12
TsTs?
Baù5¥4
).()()(
12
2
1
TsTsdttv
T
T
=∴
∫
).()( tvts =
′
?
~ ?yvD ?Dy
=a±s'
T
?l 1
.)( )(
)()(
)()(
)(
)(
?uW
=¥ef
ü?1
*
1f
μ
B?
P¤?uW
=¥??Tif
=¥f
^B??l
BuWX?
xfxF
dxxfxdF
xfxF
xF
xf
=
=
′
~ ?yvD ?Dy
? ?
±s'
T
?T )(xF
^ ??f
)(xf uW ],[ ba
¥B?ef
5 )()()( aFbFdxxf
b
a
=
∫
?s?
=??uW 1],[?nba
£
bxxxxa
nn
=<<<<=
110
L
),,2,1](,[],[
1
nixxnba
ii
L=
?luW$sé1
*
1
?′? ?μ?
! Lagrangexxx
iii
,
1?
=?
iiii
xFxFxF?ξ )()()(
1
′
=?
),(
1 iii
xx
∈ξ
~ ?yvD ?Dy
[
∑
=
=?
n
i
ii
xFxFaFbF
1
1
)]()([)()(
i
n
i
i
xF?ξ?
′
=
∑
=1
)(
∑
=
=
n
i
ii
xf
1
)(?ξ
'¤
T?
7,0},,2,1|max{ →== nix
i
L?λ
.],[)(
??# V?? baxf
.)()()( dxxfaFbF
b
a
∫
=?
——
d — ??
DG
T
~ ?yvD ?Dy
)()()( aFbFdxxf
b
a
=
∫
±s'
TV
ü
[]
b
a
xF )(=
B? ??f
uW ],[ ba
¥?s??
¥?iB?ef
uW ],[ ba
¥9
,
?i ? ba >
H )()()( aFbFdxxf
b
a
=
∫
ˉ? ?,
p?sù51pef
¥ù5,
~ ?yvD ?Dy
è p,)1sincos2(
2
0
∫
π
+ dxxx
e
T [ ]
2
0
cossin2
π
xxx=,
2
3
π
=
è
!,p,
≤<
≤≤
=
215
102
)(
x
xx
xf
∫
2
0
)( dxxf
3
3
∫ ∫∫
+=
1
0
2
1
2
0
)()()( dxxfdxxfdxxf
]2,1[
?? 1=x
H 5)( =xf,
∫ ∫
+=
1
0
2
1
52 dxxdxe
T
.6=
x
y
o 1 2
~ ?yvD ?Dy
è p
.},max{
2
2
2
∫
dxxx
3
?m? V?
},max{)(
2
xxxf =
,
21
10
02
2
2
≤≤
≤≤
≤≤?
=
xx
xx
xx
∫∫∫
++=∴
2
1
2
1
0
0
2
2
dxxxdxdxxe
T
.
2
11
=
x
y
o
2
xy =
xy =
1
2
2?
~ ?yvD ?Dy
è p
3
.
1
1
2
dx
x
∫
? 0<x
H
x
1
¥B?ef
^ ||ln x,
dx
x
∫
1
2
1
[ ]
1
2
||ln
= x
.2ln2ln1ln?=?=
è 9
wL xy sin= ],0[ π
D xà
?
?¥
ü
m?¥
,
3
x
y
o
π
∫
π
=
0
sin xdxA
[ ]
π
=
0
cos x
.2=
~ ?yvD ?Dy
!f
)(xf uW ],[ ba
?? iO
! x1
],[ ba
¥B?
∫
x
a
dxxf )(
I3?s
∫
=
x
a
dttf )(
:
.)()(
∫
=Φ
x
a
dttfx s
Kf
?T
K xuW ],[ ba
?iM?5
?
B?|?¥ x′?sμB??′
[
],[ ba
?l
B?f
?as
Kf
#?
~ ?yvD ?Dy
a
b
x
y
o
? ? ?T )(xf ],[ ba
??5s
K¥f
dttfx
x
a
∫
=Φ )()( ],[ ba
μ?
O
¥?
^ )()()( xfdttf
dx
d
x
x
a
==Φ
′
∫
)( bxa ≤≤
s
Kf
¥?é
xx?+
£
dttfxx
xx
a
∫
+
=?+Φ )()(
)()( xxx Φ+Φ=?Φ
dttfdttf
x
a
xx
a
∫∫
=
+
)()(
)(xΦ
x
~ ?yvD ?Dy
ξ
dttfdttfdttf
x
a
xx
x
x
a
∫∫∫
+=
+
)()()(
,)(
∫
+
=
xx
x
dttf
?s?′? ?¤
xf?=?Φ )(ξ
],,[ xxx?+∈ξ
xx →→? ξ,0
),(ξf
x
=
Φ
)(limlim
00
ξf
x
xx →?→?
=
Φ
).()( xfx =Φ
′
∴
a
b
x
y
o
xx?+
)( xΦ
x
~ ?yvD ?Dy
?T )(tf ?? )(xa a )(xb V?
5 dttfxF
xb
xa
∫
=
)(
)(
)()( ¥?
)(xF
′
1
?
[ ] [ ] )()()()( xaxafxbxbf
′
′
=
£
dttfxF
xa
xb
)()(
0
)(
)(
0
+=
∫∫
dttf
xb
∫
=
)(
0
)(
,)(
)(
0
dttf
xa
∫
[ ] [ ] )()()()()( xaxafxbxbfxF
′
′
=
′
∫
=
′
)(
)(
)()(
xb
xa
dttf
dx
d
xF
~ ?yvD ?Dy
è p,lim
2
1
cos
0
2
x
dte
x
t
x
∫
→
3
∫
1
cos
2
x
t
dte
dx
d
,
cos
1
2
∫
=
x
t
dte
dx
d
)(cos
2
cos
′
=
xe
x
,sin
2
cos x
ex
=
2
1
cos
0
2
lim
x
dte
x
t
x
∫
→
x
ex
x
x
2
sin
lim
2
cos
0
→
=
.
2
1
e
=
0
0
s ?
^ ???
T?¨
ArE5,
~ ?yvD ?Dy
è
! )(xf ),( +∞?∞
= ??O 0)( >xf,
£
üf
∫
∫
=
x
x
dttf
dtttf
xF
0
0
)(
)(
)( ),0( +∞
=1??9
Ff
,
£
∫
x
dtttf
dx
d
0
)( ),(xxf=
∫
x
dttf
dx
d
0
)(
),(xf=
2
0
00
)(
)()()()(
)(
=
′
∫
∫∫
x
xx
dttf
dtttfxfdttfxxf
xF
~ ?yvD ?Dy
()
,
)(
)()()(
)(
2
0
0
∫
∫
=
′
x
x
dttf
dttftxxf
xF
)0(,0)( >> xxfQ,0)(
0
∫
>∴
x
dttf
,0)()( >? tftxQ
,0)()(
0
∫
>?∴
x
dttftx
).0(0)( >>
′
∴ xxF
# )(xF ),0( +∞
=1??9Ff
,
~ ?yvD ?Dy
è
! )(xf ]1,0[
??O 1)( <xf,£
ü
1)(2
0
=?
∫
dttfx
x
]1,0[
oμB?3,
£,1)(2)(
0
=
∫
dttfxxF
x
,0)(2)( >?=
′
∴ xfxF
,1)( <xfQ
)(xF ]1,0[
1??9Ff
,
,01)0( <?=F
∫
=
1
0
)(1)1( dttfF
∫
=
1
0
)](1[ dttf,0>
[ 0)( =xF 'eZ? ]1,0[
oμB?3,
7
~ ?yvD ?Dy
? ?
ef
i? ?
?T )(xf ],[ ba
??5s
K¥f
dttfx
x
a
∫
=Φ )()( ü
^ )(xf ],[ ba
¥B?
ef
? ?¥×1il
1 \?
??f
¥ef
^i¥,
2?£
U
sD?¥?sDef
-
W¥ ó",
~ ?yvD ?Dy
1.±s'
T
2.s
Kf
∫
=Φ
x
a
dttfx )()(
3.s
Kf
¥?
)()( xfx =Φ
′
)()()( aFbFdxxf
b
a
=
∫
1al2
d ??
DG
TY
±sDDsD-
W¥1"
~ ?yvD ?Dy
± I5
! )(xf ],[ ba
??5 dttf
x
a
∫
)( D
duuf
b
x
∫
)(
^ x¥f
^ tD u¥f
$
ì
¥?
i
$?i??
I
1$
~ ?yvD ?Dy
± I53s
dttf
x
a
∫
)( D duuf
b
x
∫
)( ?
^ x¥f
)()( xfdttf
dx
d
x
a
=
∫
)()( xfduuf
dx
d
b
x
=
∫
~ ?yvD ?Dy
BaA b5
a
∫
b
a
x
dxe
dx
d
2
2
@@@@@@@
a
∫
=
x
a
dxxf
dx
d
))(( @@@@@@@@@@
a =+
∫
2
2
3
)1ln(
x
dttt
dx
d
@@@@@@@
a
∫
=
2
0
)( dxxf @@@@?
<<?
≤≤
=
21,2
10,
)(
2
xx
xx
xf
a
!
∫
π
π?
=,coscos
1
nxdxmxI
dxnxmxI
∫
=
π
π
sinsin
2
5
~ ?yvD ?Dy
a? nm =
H
1
I @@
2
I @@@@@
a? nm ≠
H
1
I @@@
2
I @@@@@
a
!,sincos
3
∫
=
π
π
nxdxmxI
a? nm =
H
3
I @@@@
a? nm ≠
H
3
I @@@@@
a =+
∫
9
4
)1( dxxx @@@@@
a =
+
∫
3
3
1
2
1 x
dx
@@@@@
a =
∫
→
x
dtt
x
x
0
2
0
cos
lim @@@@@@@@
~ ?yvD ?Dy
?z p?
a
!f
)(xyy = ?Z? 0cos
00
=+
∫∫
xy
t
tdtdte
?
?p
dx
dy
a
!
=
=
∫
∫
1
2
1
2
2
,ln
,ln
t
t
uduuy
uduux
)1( >t
p
2
2
dx
yd
a
∫
π
x
x
dtt
dx
d
cos
sin
2
)cos(
a
!
∫
+
=
2
0
3
1
)(
x
x
dx
xg p )1(g
′′
~ ?yvD ?Dy
?a 9
/
ò?s
a
∫
+
2
1
2
2
)
1
( dx
x
x a
∫
2
1
2
1
2
1 x
dx
a
∫
+
++
0
1
2
24
1
133
dx
x
xx
a
∫
π2
0
sin dxx
1ap/
K
1a
∫
∫
+∞→
x
t
x
t
x
dte
dte
0
2
2
0
2
2
)(
lim ; 2a
2
5
0
2
0
2
1
)cos1(
lim
x
dtt
x
x
∫
+→
.
~ ?yvD ?Dy
?a
! )(xf 1 ??f
£
ü
∫∫∫
=?
xxt
dtduufdttxtf
000
))(())((
Bapf
∫
+?
+
=
x
dt
tt
t
xf
0
2
1
13
)( uW []1,0
¥K
v′DKl′
ta
!
><
≤≤
=
H ?
H ?
π
π
xx
xx
xf
00
0,sin
2
1
)(
p
∫
=
x
dttfx
0
)()
),( ∞+?∞
=¥Vr
T
~ ?yvD ?Dy
?a
! [ ]baxf,)(
??O,0)( >xf
∫∫
+=
x
a
x
b
tf
dt
dttfxF
)(
)()(
£
ü
a 2)(
'
≥xF
aZ? 0)( =xF ),( ba
=μO?μB??
~ ?yvD ?Dy
Baa a )()( afxf? a )1ln(
2
3
+? xx
a
6
5
a
ππ,
a ;
6
1
45 a
6
π
a
=aa
1sin
cos
x
x
a
tt ln2
1
2
a )sincos()cos(sin
2
xxx π a 2?
?aa
8
5
2 a
3
π
a 1
4
+
π
a
5s?
~ ?yvD ?Dy
1aa a
10
1
Ba
33
5π
ta
π>
π≤≤?
<
=φ
x
xx
x
x
,1
0,)cos1(
2
1
0,0
)(
? 2 ?
±s¥'
T
D'? ?
~ ?yvD ?Dy
M
°L??ê?f
D
f
¥ ó"
M
°L??
^?1
∫
2
1
)(
T
T
dttv
!
t8T°L?X?
)(tvv =
^
H
WW? ],[
21
TT
t¥B? ??f
O
0)( ≥tv pt8?
HW
=
üV¥
^?,
6BZ
?
^? VV
U1 )()(
12
TsTs?
Baù5¥4
).()()(
12
2
1
TsTsdttv
T
T
=∴
∫
).()( tvts =
′
?
~ ?yvD ?Dy
=a±s'
T
?l 1
.)( )(
)()(
)()(
)(
)(
?uW
=¥ef
ü?1
*
1f
μ
B?
P¤?uW
=¥??Tif
=¥f
^B??l
BuWX?
xfxF
dxxfxdF
xfxF
xF
xf
=
=
′
~ ?yvD ?Dy
? ?
±s'
T
?T )(xF
^ ??f
)(xf uW ],[ ba
¥B?ef
5 )()()( aFbFdxxf
b
a
=
∫
?s?
=??uW 1],[?nba
£
bxxxxa
nn
=<<<<=
110
L
),,2,1](,[],[
1
nixxnba
ii
L=
?luW$sé1
*
1
?′? ?μ?
! Lagrangexxx
iii
,
1?
=?
iiii
xFxFxF?ξ )()()(
1
′
=?
),(
1 iii
xx
∈ξ
~ ?yvD ?Dy
[
∑
=
=?
n
i
ii
xFxFaFbF
1
1
)]()([)()(
i
n
i
i
xF?ξ?
′
=
∑
=1
)(
∑
=
=
n
i
ii
xf
1
)(?ξ
'¤
T?
7,0},,2,1|max{ →== nix
i
L?λ
.],[)(
??# V?? baxf
.)()()( dxxfaFbF
b
a
∫
=?
——
d — ??
DG
T
~ ?yvD ?Dy
)()()( aFbFdxxf
b
a
=
∫
±s'
TV
ü
[]
b
a
xF )(=
B? ??f
uW ],[ ba
¥?s??
¥?iB?ef
uW ],[ ba
¥9
,
?i ? ba >
H )()()( aFbFdxxf
b
a
=
∫
ˉ? ?,
p?sù51pef
¥ù5,
~ ?yvD ?Dy
è p,)1sincos2(
2
0
∫
π
+ dxxx
e
T [ ]
2
0
cossin2
π
xxx=,
2
3
π
=
è
!,p,
≤<
≤≤
=
215
102
)(
x
xx
xf
∫
2
0
)( dxxf
3
3
∫ ∫∫
+=
1
0
2
1
2
0
)()()( dxxfdxxfdxxf
]2,1[
?? 1=x
H 5)( =xf,
∫ ∫
+=
1
0
2
1
52 dxxdxe
T
.6=
x
y
o 1 2
~ ?yvD ?Dy
è p
.},max{
2
2
2
∫
dxxx
3
?m? V?
},max{)(
2
xxxf =
,
21
10
02
2
2
≤≤
≤≤
≤≤?
=
xx
xx
xx
∫∫∫
++=∴
2
1
2
1
0
0
2
2
dxxxdxdxxe
T
.
2
11
=
x
y
o
2
xy =
xy =
1
2
2?
~ ?yvD ?Dy
è p
3
.
1
1
2
dx
x
∫
? 0<x
H
x
1
¥B?ef
^ ||ln x,
dx
x
∫
1
2
1
[ ]
1
2
||ln
= x
.2ln2ln1ln?=?=
è 9
wL xy sin= ],0[ π
D xà
?
?¥
ü
m?¥
,
3
x
y
o
π
∫
π
=
0
sin xdxA
[ ]
π
=
0
cos x
.2=
~ ?yvD ?Dy
!f
)(xf uW ],[ ba
?? iO
! x1
],[ ba
¥B?
∫
x
a
dxxf )(
I3?s
∫
=
x
a
dttf )(
:
.)()(
∫
=Φ
x
a
dttfx s
Kf
?T
K xuW ],[ ba
?iM?5
?
B?|?¥ x′?sμB??′
[
],[ ba
?l
B?f
?as
Kf
#?
~ ?yvD ?Dy
a
b
x
y
o
? ? ?T )(xf ],[ ba
??5s
K¥f
dttfx
x
a
∫
=Φ )()( ],[ ba
μ?
O
¥?
^ )()()( xfdttf
dx
d
x
x
a
==Φ
′
∫
)( bxa ≤≤
s
Kf
¥?é
xx?+
£
dttfxx
xx
a
∫
+
=?+Φ )()(
)()( xxx Φ+Φ=?Φ
dttfdttf
x
a
xx
a
∫∫
=
+
)()(
)(xΦ
x
~ ?yvD ?Dy
ξ
dttfdttfdttf
x
a
xx
x
x
a
∫∫∫
+=
+
)()()(
,)(
∫
+
=
xx
x
dttf
?s?′? ?¤
xf?=?Φ )(ξ
],,[ xxx?+∈ξ
xx →→? ξ,0
),(ξf
x
=
Φ
)(limlim
00
ξf
x
xx →?→?
=
Φ
).()( xfx =Φ
′
∴
a
b
x
y
o
xx?+
)( xΦ
x
~ ?yvD ?Dy
?T )(tf ?? )(xa a )(xb V?
5 dttfxF
xb
xa
∫
=
)(
)(
)()( ¥?
)(xF
′
1
?
[ ] [ ] )()()()( xaxafxbxbf
′
′
=
£
dttfxF
xa
xb
)()(
0
)(
)(
0
+=
∫∫
dttf
xb
∫
=
)(
0
)(
,)(
)(
0
dttf
xa
∫
[ ] [ ] )()()()()( xaxafxbxbfxF
′
′
=
′
∫
=
′
)(
)(
)()(
xb
xa
dttf
dx
d
xF
~ ?yvD ?Dy
è p,lim
2
1
cos
0
2
x
dte
x
t
x
∫
→
3
∫
1
cos
2
x
t
dte
dx
d
,
cos
1
2
∫
=
x
t
dte
dx
d
)(cos
2
cos
′
=
xe
x
,sin
2
cos x
ex
=
2
1
cos
0
2
lim
x
dte
x
t
x
∫
→
x
ex
x
x
2
sin
lim
2
cos
0
→
=
.
2
1
e
=
0
0
s ?
^ ???
T?¨
ArE5,
~ ?yvD ?Dy
è
! )(xf ),( +∞?∞
= ??O 0)( >xf,
£
üf
∫
∫
=
x
x
dttf
dtttf
xF
0
0
)(
)(
)( ),0( +∞
=1??9
Ff
,
£
∫
x
dtttf
dx
d
0
)( ),(xxf=
∫
x
dttf
dx
d
0
)(
),(xf=
2
0
00
)(
)()()()(
)(
=
′
∫
∫∫
x
xx
dttf
dtttfxfdttfxxf
xF
~ ?yvD ?Dy
()
,
)(
)()()(
)(
2
0
0
∫
∫
=
′
x
x
dttf
dttftxxf
xF
)0(,0)( >> xxfQ,0)(
0
∫
>∴
x
dttf
,0)()( >? tftxQ
,0)()(
0
∫
>?∴
x
dttftx
).0(0)( >>
′
∴ xxF
# )(xF ),0( +∞
=1??9Ff
,
~ ?yvD ?Dy
è
! )(xf ]1,0[
??O 1)( <xf,£
ü
1)(2
0
=?
∫
dttfx
x
]1,0[
oμB?3,
£,1)(2)(
0
=
∫
dttfxxF
x
,0)(2)( >?=
′
∴ xfxF
,1)( <xfQ
)(xF ]1,0[
1??9Ff
,
,01)0( <?=F
∫
=
1
0
)(1)1( dttfF
∫
=
1
0
)](1[ dttf,0>
[ 0)( =xF 'eZ? ]1,0[
oμB?3,
7
~ ?yvD ?Dy
? ?
ef
i? ?
?T )(xf ],[ ba
??5s
K¥f
dttfx
x
a
∫
=Φ )()( ü
^ )(xf ],[ ba
¥B?
ef
? ?¥×1il
1 \?
??f
¥ef
^i¥,
2?£
U
sD?¥?sDef
-
W¥ ó",
~ ?yvD ?Dy
1.±s'
T
2.s
Kf
∫
=Φ
x
a
dttfx )()(
3.s
Kf
¥?
)()( xfx =Φ
′
)()()( aFbFdxxf
b
a
=
∫
1al2
d ??
DG
TY
±sDDsD-
W¥1"
~ ?yvD ?Dy
± I5
! )(xf ],[ ba
??5 dttf
x
a
∫
)( D
duuf
b
x
∫
)(
^ x¥f
^ tD u¥f
$
ì
¥?
i
$?i??
I
1$
~ ?yvD ?Dy
± I53s
dttf
x
a
∫
)( D duuf
b
x
∫
)( ?
^ x¥f
)()( xfdttf
dx
d
x
a
=
∫
)()( xfduuf
dx
d
b
x
=
∫
~ ?yvD ?Dy
BaA b5
a
∫
b
a
x
dxe
dx
d
2
2
@@@@@@@
a
∫
=
x
a
dxxf
dx
d
))(( @@@@@@@@@@
a =+
∫
2
2
3
)1ln(
x
dttt
dx
d
@@@@@@@
a
∫
=
2
0
)( dxxf @@@@?
<<?
≤≤
=
21,2
10,
)(
2
xx
xx
xf
a
!
∫
π
π?
=,coscos
1
nxdxmxI
dxnxmxI
∫
=
π
π
sinsin
2
5
~ ?yvD ?Dy
a? nm =
H
1
I @@
2
I @@@@@
a? nm ≠
H
1
I @@@
2
I @@@@@
a
!,sincos
3
∫
=
π
π
nxdxmxI
a? nm =
H
3
I @@@@
a? nm ≠
H
3
I @@@@@
a =+
∫
9
4
)1( dxxx @@@@@
a =
+
∫
3
3
1
2
1 x
dx
@@@@@
a =
∫
→
x
dtt
x
x
0
2
0
cos
lim @@@@@@@@
~ ?yvD ?Dy
?z p?
a
!f
)(xyy = ?Z? 0cos
00
=+
∫∫
xy
t
tdtdte
?
?p
dx
dy
a
!
=
=
∫
∫
1
2
1
2
2
,ln
,ln
t
t
uduuy
uduux
)1( >t
p
2
2
dx
yd
a
∫
π
x
x
dtt
dx
d
cos
sin
2
)cos(
a
!
∫
+
=
2
0
3
1
)(
x
x
dx
xg p )1(g
′′
~ ?yvD ?Dy
?a 9
/
ò?s
a
∫
+
2
1
2
2
)
1
( dx
x
x a
∫
2
1
2
1
2
1 x
dx
a
∫
+
++
0
1
2
24
1
133
dx
x
xx
a
∫
π2
0
sin dxx
1ap/
K
1a
∫
∫
+∞→
x
t
x
t
x
dte
dte
0
2
2
0
2
2
)(
lim ; 2a
2
5
0
2
0
2
1
)cos1(
lim
x
dtt
x
x
∫
+→
.
~ ?yvD ?Dy
?a
! )(xf 1 ??f
£
ü
∫∫∫
=?
xxt
dtduufdttxtf
000
))(())((
Bapf
∫
+?
+
=
x
dt
tt
t
xf
0
2
1
13
)( uW []1,0
¥K
v′DKl′
ta
!
><
≤≤
=
H ?
H ?
π
π
xx
xx
xf
00
0,sin
2
1
)(
p
∫
=
x
dttfx
0
)()
),( ∞+?∞
=¥Vr
T
~ ?yvD ?Dy
?a
! [ ]baxf,)(
??O,0)( >xf
∫∫
+=
x
a
x
b
tf
dt
dttfxF
)(
)()(
£
ü
a 2)(
'
≥xF
aZ? 0)( =xF ),( ba
=μO?μB??
~ ?yvD ?Dy
Baa a )()( afxf? a )1ln(
2
3
+? xx
a
6
5
a
ππ,
a ;
6
1
45 a
6
π
a
=aa
1sin
cos
x
x
a
tt ln2
1
2
a )sincos()cos(sin
2
xxx π a 2?
?aa
8
5
2 a
3
π
a 1
4
+
π
a
5s?
~ ?yvD ?Dy
1aa a
10
1
Ba
33
5π
ta
π>
π≤≤?
<
=φ
x
xx
x
x
,1
0,)cos1(
2
1
0,0
)(