~ ?yvD ?Dy
? 6 ?
?s¥DíE
~ ?yvD ?Dy
9
?s¥1o?p$f
¥ef
,7pef
31Dís
H,?ü??s¥
DíE¨??s
?,
∫
+
3
1
ln1
1
e
xx
dx
p è
3
∫∫
+
+
=
+
33
11
ln1
)ln1(
ln1
ee
x
xd
xx
dx
3
1
2
1
)ln1(2
e
x+=
.2)12(2 =?=
~ ?yvD ?Dy
pef
H,oX±s7?Dí,'ef
¥M
^e$f
¥M
,}?
/KM
h' V,
,
11
2
1
2
2
¥s??
∫
x
dxx
pef
3Dí x=sint,5p¥ef
^[ t 1M
,A?|í1 x ¥f
?
}?
/K,?Dí¥]
Hü x ¥uWD1 t ¥
uW,9
÷eL,?ü
^?s¥DíE,
~ ?yvD ?Dy
? ?L
!
f
)(xf ],[ ba
??
f
)(tx?= ],[ βα
^?′¥Oμ ??
?
?M
tuW ],[ βα
M
H )(tx?=
¥′ ],[ ba
MO a=)(α? a b=)(β?
5μ dtttfdxxf
b
a
∫∫
′
=
β
α
)()]([)(
Ba?s¥Dí
T
~ ?yvD ?Dy
£
),()()( aFbFdxxf
b
a
=
∫
5μ
),()]([ ttF Φ? =
7
dt
dx
dx
dF
t?=Φ
′
)( )()( txf?
′
= ),()]([ ttf?
′
=
),()()()]([ αΦ?βΦ=?
′
∫
β
α
dtttf
)(tΦ∴
^ )()]([ ttf
′
¥B?ef
,
#
H$ ?? ?? |tztxxf )()(,)(
′
=
,)()(,¥ef
^
!f
¥ef
i xfxF
)],([)]([ α?β? FF?=
~ ?yvD ?Dy
a=)(α? a b=)(β?,
)()( αβ Φ?Φ )]([)]([ α?β? FF?=
),()( aFbF?=
)()()( aFbFdxxf
b
a
=
∫
)()( αβ Φ?Φ=
.)()]([ dtttf
∫
′
=
β
α
¥?
^??f
uW?i xtx )(],[,?βα =
9 V¥uW¤?¥uW ),(],,[],[ βαβα <tba
.),(],[
Tˉ? ?uW
^ βααβ >
~ ?yvD ?Dy
?¨Dí
T
H??i,
1
p )()]([ ttf
′
¥B?ef
)(tΦa?
A`9
??s
*"1ü )(tΦ MD?
eM
x¥f
7o1ü?M
t¥
a
/KsY}? )(tΦ ?aMhü?
,
3
}D )(tx?= A?
^?′O )(t?
′
^su
W ],[ βα
¥ ??f
,
2
¨ )(tx?= üM
xD??M
t
HsK9
M?¥?M,
~ ?yvD ?Dy
è 9
3
7
∫
9
4
1x
dx
,tx =
,
2
tx =,2tdtdx =
,2,4 == tx
H,3,9 == tx
H
∫∫
=
∴
3
2
9
4
1
2
1 t
tdt
x
dx
∫∫
+=
+?
=
3
2
3
2
)
1
1
1(2
1
11
2 dt
t
dt
t
t
3
2
|]1|ln[2?+= tt
).2ln1(2 +=
~ ?yvD ?Dy
∫
+
3
1
22
1
xx
dx
p
3
,
3
,3,
4
,1
ππ
==== txtx
H
H
∫∫
=
+
3
4
2
2
3
1
22
sectan
sec
1
π
π
dt
tt
t
xx
dx
dt
t
t
∫
=
3
4
2
sin
cos
π
π
3
4
3
4
2
]
sin
1
[sinsin
π
π
π
π
t
ttd?==
∫
.
3
32
2)2
3
2
(?==
,sectan
2
tdtdxtx =?=
7
è 3
~ ?yvD ?Dy
è p
∫
2
1
2
2
1
dx
x
x
3
3
2,01
π
=?==?= txtx
∫
2
1
2
2
1
dx
x
x
tdtt
t
t
tansec
sec
tan
3
0
2
∫
=
π
∫
=
3
0
)cos(sec
π
dttt
∫
=
3
0
2
sec
1sec
π
dt
t
t
3
0
]sin|tansec|[ln
π
ttt?+=
.
2
3
)32ln(?+=
,tansecsec tdttdxtx?=?=
7
~ ?yvD ?Dy
è 9
∫
2
2
2
1x
dx
7,022,sec <?≤≤?= xtx ??
,
4
3
2,
3
2
2),,
2
(
ππ
π
π
====∈ txtxt
,tansec tdttdx =
∫
2
2
2
1x
dx
∫∫
=
=
4
3
3
2
4
3
3
2
sec
tan
tansec
π
π
π
π
tdtdt
t
tt
4
3
3
2
|tansec|ln
π
π
tt +?=
|32|ln|12|ln+=
.
12
32
ln
+
+
=
3
~ ?yvD ?Dy
è 9
.sincos
2
0
5
∫
π
xdxx
3
7
,cos xt =
2
π
=x
,0=? t
0=x
,1=? t
∫
π
2
0
5
sincos xdxx
∫
=
0
1
5
dtt
1
0
6
6
t
=
.
6
1
=
,sin xdxdt?=
~ ?yvD ?Dy
è 9
.
1
1
0
∫
+
x
e
dx
3
7
,
x
et =
0=x
,1=? t
1=x
,et =?
∫
+
1
0
1
x
e
dx
5
∫
+
=
e
tt
dt
1
)1(
∫
+
=
e
dt
tt
1
)
1
11
(
,ln
t
dt
dxtx =?=5
e
tt
1
|]1|ln||[ln +?=
]2ln1[ln)]1ln([ln+?= ee
.
1
2
ln
e
e
+
=
~ ?yvD ?Dy
è 9
.1
1
0
2
∫
dxxx
3
7
,1
2
ux =?
0=x
,1=? u
1=x
,0=? u
∫
1
0
2
1 dxxx5 duu
∫
=
0
1
2
1
duu
∫
=
1
0
2
1
,
2
1
duxdx?=5
1
0
2
3
3
2
2
1
u?=
.
3
1
=
~ ?yvD ?Dy
?
üA1 ???T?M
è u 8
?M÷7[/
¥
*
1s
a/K V[
∫
1
0
2
1 dxxx' )1(1
2
1
2
1
0
2
xdx=
∫
1
0
2
3
2
)1(
3
2
2
1
x=
.
3
1
=
:?
T
~ ?yvD ?Dy
è 9
3
.sinsin
0
53
∫
π
dxxx
xxxf
53
sinsin)(?=Q
()
2
3
sincos xx=
∫
π
∴
0
53
sinsin dxxx
()
∫
π
=
0
2
3
sincos dxxx
()
∫
π
=
2
0
2
3
sincos dxxx
()
∫
π
π
2
2
3
sincos dxxx
()
∫
π
=
2
0
2
3
sinsin xdx ()
∫
π
π
2
2
3
sinsin xdx
()
2
0
2
5
sin
5
2
π
= x ()
π
π
2
2
5
sin
5
2
x
.
5
4
=
~ ?yvD ?Dy
è 9
3
.
)ln1(ln
4
3
∫
e
e
xxx
dx
e
T
∫
=
4
3
)ln1(ln
)(ln
e
e
xx
xd
∫
=
4
3
)ln1(ln
)(ln
e
e
xx
xd
∫
=
4
3
2
)ln(1
ln
2
e
e
x
xd
[]
4
3
)lnarcsin(2
e
e
x=
.
6
π
=
~ ?yvD ?Dy
tx =ln
73=
e
T
∫
=
4
3
)ln1(ln
)(ln
e
e
xx
xd
∫
=
43
21
)1( tt
dt
∫
=
43
21
2
)
2
1
(
4
1
)
2
1
(
t
td
43
21
)
2
1
(2arcsin?= t
.
62
1
arcsin
π
==
,
4
3
,
2
1
4
3
=?==?= textex
~ ?yvD ?Dy
è 9
3
∫
>
+
a
adx
xax
0
22
)0(.
1
7
,sin tax =
ax =,
2
π
=? t 0=x,0=? t
,costdtadx =
e
T
∫
π
+
=
2
0
22
)sin1(sin
cos
dt
tata
ta
∫
π
+
=
2
0
cossin
cos
dt
tt
t
∫
π
+
+=
2
0
cossin
sincos
1
2
1
dt
tt
tt
[]
2
0
cossinln
2
1
22
1
π
++
π
= tt
.
4
π
=
~ ?yvD ?Dy
è ? )(xf ],[ aa?
??Oμ
? )(xf 1
}f
5
∫ ∫
=
a
a
a
dxxfdxxf
0
)(2)(
? )(xf 1f
5
∫
=
a
a
dxxf 0)(,
£
,)()()(
0
0
∫ ∫∫
+=
a
a
a
a
dxxfdxxfdxxf
∫
0
)(
a
dxxf ?
7 tx?=,
?s¥DíE9 V¨?£
üs?
T,e
s9
?,
~ ?yvD ?Dy
∫
=
0
)(
a
dxxf
∫
=
0
)(
a
dttf,)(
0
∫
a
dttf
? )(xf 1
}f
5
),()( xfxf =?
∫∫
+=∴
a
a
a
dxxfxfdxxf
0
)]()([)(;)(2
0
∫
=
a
dxxf
? )( xf 1f
5
),()( xfxf?=?
∫∫
+=∴
a
a
a
dxxfxfdxxf
0
)]()([)(
.0=
,)]()([)(
0
∫
+
∫
=∴
aa
a
dxxfxfdxxf
~ ?yvD ?Dy
f
è 9
3
.
11
cos2
1
1
2
2
∫
+
+
dx
x
xxx
e
T
∫
+
=
1
1
2
2
11
2
dx
x
x
∫
+
+
1
1
2
11
cos
dx
x
xx
}f
∫
+
=
1
0
2
2
11
4 dx
x
x
∫
=
1
0
2
22
)1(1
)11(
4 dx
x
xx
∫
=
1
0
2
)11(4 dxx
∫
=
1
0
2
144 dxx
.4 π?=
?ê?¥
~ ?yvD ?Dy
è ? )(xf ]1,0[
??£
ü
1
∫∫
ππ
=
22
00
)(cos)(sin dxxfdxxf ;
2
∫∫
ππ
π
=
00
)(sin
2
)(sin dxxfdxxxf,
?N9
∫
π
+
0
2
cos1
sin
dx
x
xx
,
£
1
!
tx?
π
=
2
,dtdx?=?
0=x
,
2
π
=? t
2
π
=x,0=? t
~ ?yvD ?Dy
∫
π
2
0
)(sin dxxf
∫π
π
=
0
2
2
sin dttf
∫
π
=
2
0
)(cos dttf ;)(cos
2
0
∫
π
= dxxf
2
! tx?π=
,dtdx?=?
0=x
,π=? t
π=x
,0=? t
∫
π
0
)(sin dxxxf
∫
π
π?π?=
0
)][sin()( dttft
,)(sin)(
0
∫
π
π= dttft
~ ?yvD ?Dy
∫
π
π=
0
)(sin dttf
∫
π
0
)(sin dtttf
∫
π
π=
0
)(sin dxxf,)(sin
0
∫
π
dxxxf
.)(sin
2
)(sin
00
∫∫
ππ
π
=∴ dxxfdxxxf
∫
π
+
0
2
cos1
sin
dx
x
xx
∫
π
+
π
=
0
2
cos1
sin
2
dx
x
x
∫
π
+
π
=
0
2
)(cos
cos1
1
2
xd
x
[]
π
π
=
0
)arctan(cos
2
x
.
4
2
π
=
)
44
(
2
π
π
π
=
∫
π
0
)(sin dxxxf
~ ?yvD ?Dy
è 15
1?iè
?
1?
ù¥ ??f
5
^[
!
adxxfdxxf
Txf
TTa
a
∫
=
∫
+
0
)()(
)(
£
dxxfdxxfdxxfdxxf
Ta
T
T
a
Ta
a
∫
+
∫
+
∫
=
∫
++
)()()()(
0
0
dtdxTtxdxxf
Ta
T
=?+=
∫
+
)(
7?
H?
H? 0 atTaxtTx =+===
dtTtfdxxf
aTa
T
∫
+=
∫
+
0
)()( 5
dxxfdttf
aa
∫
=
∫
=
00
)()(
dxxfdxxfdxxfdxxf
Ta
T
T
a
Ta
a
∫
+
∫
+
∫
=
∫
∴
++
)()()()(
0
0
dxxf
T
∫
=
0
)(
~ ?yvD ?Dy
∫
π100
0
|sin| dxx
∫
=
π
0
|sin|100 dxx
∫
=
π
0
sin100 xdx
π
0
]cos[100 x?=
2002100 =×=
~ ?yvD ?Dy
è 16
!f
<<?
+
≥
=
01,
cos1
1
0,
)(
2
x
x
xxe
xf
x
∫
4
1
)2( dxxfp
3
,2 tx =?
!,dtdx =5
O;1,1?== tx
H?,2,4 == tx
H?
∫∫
=?∴
2
1
4
1
)()2( dttfdxxf
∫∫
+
+
=
2
0
0
1
2
cos1
dtte
t
dt
t
∫∫
=
2
0
2
0
1
2
)(
2
1
2
cos
2
2
tde
t
t
d
t
~ ?yvD ?Dy
2
0
0
1
2
2
1
]
2
[tan
t
e
t
=
2
1
2
1
2
1
tan
4
+?=
e
~ ?yvD ?Dy
+?+
ysa?s¥+??
T
?s¥DíE
dxxf
b
a
∫
)( dtttf
∫
′
=
β
α
)()]([
=al2
a
}f
?uW¥s,
∫∫
=
2
0
2
0
)(cos)(sin
ππ
dxxfdxxf
∫∫
=
ππ
π
00
)(sin
2
)(sin dxxfdxxxf
~ ?yvD ?Dy
± I5
·p
∫
2
2
2
1xx
dx
¥3E?¥pi??
¥3E,
3
7
,sectx =
,
4
3
3
2
:
π
→
π
t,sectan tdttdx =
∫
2
2
2
1xx
dx
tdtt
tt
tansec
tansec
1
4
3
3
2
=
∫
π
π
dt
∫
π
π
=
4
3
3
2
.
12
π
=
~ ?yvD ?Dy
± I53s
9
??=?
^p¥,
tx sec=Q
,
4
3
,
3
2
ππ
∈t
,0tan <t
.tantan1
2
ttx ≠=?
??3E
^
∫
2
2
2
1xx
dx
tx sec=
tdtt
tt
tansec
tansec
1
4
3
3
2
∫
π
π
dt
∫
π
π
=
4
3
3
2
.
12
π
=
~ ?yvD ?Dy
~ ?yvD ?Dy
BaA b5
a
∫
π
π
=
π
+
3
)
3
sin( dxx @@@@@@@@@@@@@@@@@@@
a
∫
=?
π
θθ
0
3
)sin1( d @@@@@@@@@@@@@@@@
a =?
∫
2
0
2
2 dxx @@@@@@@@@@@@@
a =
∫
2
1
2
1
2
2
1
)(arcsin
dx
x
x
@@@@@@@@@@@
5a
∫
=
++
5
5
24
23
12
sin
dx
xx
xx
________________________,.
5
~ ?yvD ?Dy
=a 9
/
?s
a
∫
2
0
3
cossin
π
d a
∫
+
3
1
22
1 xx
dx
a
∫
1
4
3
11 x
dx
a
∫
π
π
2
2
3
coscos dxxx
a
∫
π
+
0
2cos1 dxx a
∫
2
2
4
cos4
π
π
θ dx
a
∫
++?
1
1
2322
)11( dxxxxx
a
∫
2
0
3
},max{ dxxx
a
∫
2
0
dxxx λ
1?
λ
~ ?yvD ?Dy
?a
!
<
+
≥
+
=
H?
H?
0,
1
1
0,
1
1
)(
x
e
x
x
xf
x
p
∫
2
0
)1( dxxf
1a
! []baxf,)(
??
£
ü
∫∫
+=
b
a
b
a
dxxbafdxxf )()(
?a£
ü
∫∫
=?
1
0
1
`0
)1()1( dxxxdxxx
mnnm
~ ?yvD ?Dy
Ba£
ü
∫∫
+=
a
a
a
dxxfxfdxxf
0
)]()([)(
ip
∫
π
π
+
4
4
sin1 x
dx
ta
! []1,0)( xf
??
£
ü
∫∫
π
π
=
2
0
2
0
)cos(
4
1
)cos( dxxfdxxf,
~ ?yvD ?Dy
5s?
Baa a
3
4
π a
2
π
a
32
3
π
a
=aa
4
1
a
3
32
2? a 2ln21? a
3
4
a 22 a π
2
3
a
4
π
a
8
π
a
4
17
a
H? 0≤λ
λ2
3
8
? 20 ≤<λ
H
3
2
3
8
3
λ
λ +? ? 2>λ
H
λ2
3
8
+?
?a )1ln(1
1?
++ e
Ba
? 6 ?
?s¥DíE
~ ?yvD ?Dy
9
?s¥1o?p$f
¥ef
,7pef
31Dís
H,?ü??s¥
DíE¨??s
?,
∫
+
3
1
ln1
1
e
xx
dx
p è
3
∫∫
+
+
=
+
33
11
ln1
)ln1(
ln1
ee
x
xd
xx
dx
3
1
2
1
)ln1(2
e
x+=
.2)12(2 =?=
~ ?yvD ?Dy
pef
H,oX±s7?Dí,'ef
¥M
^e$f
¥M
,}?
/KM
h' V,
,
11
2
1
2
2
¥s??
∫
x
dxx
pef
3Dí x=sint,5p¥ef
^[ t 1M
,A?|í1 x ¥f
?
}?
/K,?Dí¥]
Hü x ¥uWD1 t ¥
uW,9
÷eL,?ü
^?s¥DíE,
~ ?yvD ?Dy
? ?L
!
f
)(xf ],[ ba
??
f
)(tx?= ],[ βα
^?′¥Oμ ??
?
?M
tuW ],[ βα
M
H )(tx?=
¥′ ],[ ba
MO a=)(α? a b=)(β?
5μ dtttfdxxf
b
a
∫∫
′
=
β
α
)()]([)(
Ba?s¥Dí
T
~ ?yvD ?Dy
£
),()()( aFbFdxxf
b
a
=
∫
5μ
),()]([ ttF Φ? =
7
dt
dx
dx
dF
t?=Φ
′
)( )()( txf?
′
= ),()]([ ttf?
′
=
),()()()]([ αΦ?βΦ=?
′
∫
β
α
dtttf
)(tΦ∴
^ )()]([ ttf
′
¥B?ef
,
#
H$ ?? ?? |tztxxf )()(,)(
′
=
,)()(,¥ef
^
!f
¥ef
i xfxF
)],([)]([ α?β? FF?=
~ ?yvD ?Dy
a=)(α? a b=)(β?,
)()( αβ Φ?Φ )]([)]([ α?β? FF?=
),()( aFbF?=
)()()( aFbFdxxf
b
a
=
∫
)()( αβ Φ?Φ=
.)()]([ dtttf
∫
′
=
β
α
¥?
^??f
uW?i xtx )(],[,?βα =
9 V¥uW¤?¥uW ),(],,[],[ βαβα <tba
.),(],[
Tˉ? ?uW
^ βααβ >
~ ?yvD ?Dy
?¨Dí
T
H??i,
1
p )()]([ ttf
′
¥B?ef
)(tΦa?
A`9
??s
*"1ü )(tΦ MD?
eM
x¥f
7o1ü?M
t¥
a
/KsY}? )(tΦ ?aMhü?
,
3
}D )(tx?= A?
^?′O )(t?
′
^su
W ],[ βα
¥ ??f
,
2
¨ )(tx?= üM
xD??M
t
HsK9
M?¥?M,
~ ?yvD ?Dy
è 9
3
7
∫
9
4
1x
dx
,tx =
,
2
tx =,2tdtdx =
,2,4 == tx
H,3,9 == tx
H
∫∫
=
∴
3
2
9
4
1
2
1 t
tdt
x
dx
∫∫
+=
+?
=
3
2
3
2
)
1
1
1(2
1
11
2 dt
t
dt
t
t
3
2
|]1|ln[2?+= tt
).2ln1(2 +=
~ ?yvD ?Dy
∫
+
3
1
22
1
xx
dx
p
3
,
3
,3,
4
,1
ππ
==== txtx
H
H
∫∫
=
+
3
4
2
2
3
1
22
sectan
sec
1
π
π
dt
tt
t
xx
dx
dt
t
t
∫
=
3
4
2
sin
cos
π
π
3
4
3
4
2
]
sin
1
[sinsin
π
π
π
π
t
ttd?==
∫
.
3
32
2)2
3
2
(?==
,sectan
2
tdtdxtx =?=
7
è 3
~ ?yvD ?Dy
è p
∫
2
1
2
2
1
dx
x
x
3
3
2,01
π
=?==?= txtx
∫
2
1
2
2
1
dx
x
x
tdtt
t
t
tansec
sec
tan
3
0
2
∫
=
π
∫
=
3
0
)cos(sec
π
dttt
∫
=
3
0
2
sec
1sec
π
dt
t
t
3
0
]sin|tansec|[ln
π
ttt?+=
.
2
3
)32ln(?+=
,tansecsec tdttdxtx?=?=
7
~ ?yvD ?Dy
è 9
∫
2
2
2
1x
dx
7,022,sec <?≤≤?= xtx ??
,
4
3
2,
3
2
2),,
2
(
ππ
π
π
====∈ txtxt
,tansec tdttdx =
∫
2
2
2
1x
dx
∫∫
=
=
4
3
3
2
4
3
3
2
sec
tan
tansec
π
π
π
π
tdtdt
t
tt
4
3
3
2
|tansec|ln
π
π
tt +?=
|32|ln|12|ln+=
.
12
32
ln
+
+
=
3
~ ?yvD ?Dy
è 9
.sincos
2
0
5
∫
π
xdxx
3
7
,cos xt =
2
π
=x
,0=? t
0=x
,1=? t
∫
π
2
0
5
sincos xdxx
∫
=
0
1
5
dtt
1
0
6
6
t
=
.
6
1
=
,sin xdxdt?=
~ ?yvD ?Dy
è 9
.
1
1
0
∫
+
x
e
dx
3
7
,
x
et =
0=x
,1=? t
1=x
,et =?
∫
+
1
0
1
x
e
dx
5
∫
+
=
e
tt
dt
1
)1(
∫
+
=
e
dt
tt
1
)
1
11
(
,ln
t
dt
dxtx =?=5
e
tt
1
|]1|ln||[ln +?=
]2ln1[ln)]1ln([ln+?= ee
.
1
2
ln
e
e
+
=
~ ?yvD ?Dy
è 9
.1
1
0
2
∫
dxxx
3
7
,1
2
ux =?
0=x
,1=? u
1=x
,0=? u
∫
1
0
2
1 dxxx5 duu
∫
=
0
1
2
1
duu
∫
=
1
0
2
1
,
2
1
duxdx?=5
1
0
2
3
3
2
2
1
u?=
.
3
1
=
~ ?yvD ?Dy
?
üA1 ???T?M
è u 8
?M÷7[/
¥
*
1s
a/K V[
∫
1
0
2
1 dxxx' )1(1
2
1
2
1
0
2
xdx=
∫
1
0
2
3
2
)1(
3
2
2
1
x=
.
3
1
=
:?
T
~ ?yvD ?Dy
è 9
3
.sinsin
0
53
∫
π
dxxx
xxxf
53
sinsin)(?=Q
()
2
3
sincos xx=
∫
π
∴
0
53
sinsin dxxx
()
∫
π
=
0
2
3
sincos dxxx
()
∫
π
=
2
0
2
3
sincos dxxx
()
∫
π
π
2
2
3
sincos dxxx
()
∫
π
=
2
0
2
3
sinsin xdx ()
∫
π
π
2
2
3
sinsin xdx
()
2
0
2
5
sin
5
2
π
= x ()
π
π
2
2
5
sin
5
2
x
.
5
4
=
~ ?yvD ?Dy
è 9
3
.
)ln1(ln
4
3
∫
e
e
xxx
dx
e
T
∫
=
4
3
)ln1(ln
)(ln
e
e
xx
xd
∫
=
4
3
)ln1(ln
)(ln
e
e
xx
xd
∫
=
4
3
2
)ln(1
ln
2
e
e
x
xd
[]
4
3
)lnarcsin(2
e
e
x=
.
6
π
=
~ ?yvD ?Dy
tx =ln
73=
e
T
∫
=
4
3
)ln1(ln
)(ln
e
e
xx
xd
∫
=
43
21
)1( tt
dt
∫
=
43
21
2
)
2
1
(
4
1
)
2
1
(
t
td
43
21
)
2
1
(2arcsin?= t
.
62
1
arcsin
π
==
,
4
3
,
2
1
4
3
=?==?= textex
~ ?yvD ?Dy
è 9
3
∫
>
+
a
adx
xax
0
22
)0(.
1
7
,sin tax =
ax =,
2
π
=? t 0=x,0=? t
,costdtadx =
e
T
∫
π
+
=
2
0
22
)sin1(sin
cos
dt
tata
ta
∫
π
+
=
2
0
cossin
cos
dt
tt
t
∫
π
+
+=
2
0
cossin
sincos
1
2
1
dt
tt
tt
[]
2
0
cossinln
2
1
22
1
π
++
π
= tt
.
4
π
=
~ ?yvD ?Dy
è ? )(xf ],[ aa?
??Oμ
? )(xf 1
}f
5
∫ ∫
=
a
a
a
dxxfdxxf
0
)(2)(
? )(xf 1f
5
∫
=
a
a
dxxf 0)(,
£
,)()()(
0
0
∫ ∫∫
+=
a
a
a
a
dxxfdxxfdxxf
∫
0
)(
a
dxxf ?
7 tx?=,
?s¥DíE9 V¨?£
üs?
T,e
s9
?,
~ ?yvD ?Dy
∫
=
0
)(
a
dxxf
∫
=
0
)(
a
dttf,)(
0
∫
a
dttf
? )(xf 1
}f
5
),()( xfxf =?
∫∫
+=∴
a
a
a
dxxfxfdxxf
0
)]()([)(;)(2
0
∫
=
a
dxxf
? )( xf 1f
5
),()( xfxf?=?
∫∫
+=∴
a
a
a
dxxfxfdxxf
0
)]()([)(
.0=
,)]()([)(
0
∫
+
∫
=∴
aa
a
dxxfxfdxxf
~ ?yvD ?Dy
f
è 9
3
.
11
cos2
1
1
2
2
∫
+
+
dx
x
xxx
e
T
∫
+
=
1
1
2
2
11
2
dx
x
x
∫
+
+
1
1
2
11
cos
dx
x
xx
}f
∫
+
=
1
0
2
2
11
4 dx
x
x
∫
=
1
0
2
22
)1(1
)11(
4 dx
x
xx
∫
=
1
0
2
)11(4 dxx
∫
=
1
0
2
144 dxx
.4 π?=
?ê?¥
~ ?yvD ?Dy
è ? )(xf ]1,0[
??£
ü
1
∫∫
ππ
=
22
00
)(cos)(sin dxxfdxxf ;
2
∫∫
ππ
π
=
00
)(sin
2
)(sin dxxfdxxxf,
?N9
∫
π
+
0
2
cos1
sin
dx
x
xx
,
£
1
!
tx?
π
=
2
,dtdx?=?
0=x
,
2
π
=? t
2
π
=x,0=? t
~ ?yvD ?Dy
∫
π
2
0
)(sin dxxf
∫π
π
=
0
2
2
sin dttf
∫
π
=
2
0
)(cos dttf ;)(cos
2
0
∫
π
= dxxf
2
! tx?π=
,dtdx?=?
0=x
,π=? t
π=x
,0=? t
∫
π
0
)(sin dxxxf
∫
π
π?π?=
0
)][sin()( dttft
,)(sin)(
0
∫
π
π= dttft
~ ?yvD ?Dy
∫
π
π=
0
)(sin dttf
∫
π
0
)(sin dtttf
∫
π
π=
0
)(sin dxxf,)(sin
0
∫
π
dxxxf
.)(sin
2
)(sin
00
∫∫
ππ
π
=∴ dxxfdxxxf
∫
π
+
0
2
cos1
sin
dx
x
xx
∫
π
+
π
=
0
2
cos1
sin
2
dx
x
x
∫
π
+
π
=
0
2
)(cos
cos1
1
2
xd
x
[]
π
π
=
0
)arctan(cos
2
x
.
4
2
π
=
)
44
(
2
π
π
π
=
∫
π
0
)(sin dxxxf
~ ?yvD ?Dy
è 15
1?iè
?
1?
ù¥ ??f
5
^[
!
adxxfdxxf
Txf
TTa
a
∫
=
∫
+
0
)()(
)(
£
dxxfdxxfdxxfdxxf
Ta
T
T
a
Ta
a
∫
+
∫
+
∫
=
∫
++
)()()()(
0
0
dtdxTtxdxxf
Ta
T
=?+=
∫
+
)(
7?
H?
H? 0 atTaxtTx =+===
dtTtfdxxf
aTa
T
∫
+=
∫
+
0
)()( 5
dxxfdttf
aa
∫
=
∫
=
00
)()(
dxxfdxxfdxxfdxxf
Ta
T
T
a
Ta
a
∫
+
∫
+
∫
=
∫
∴
++
)()()()(
0
0
dxxf
T
∫
=
0
)(
~ ?yvD ?Dy
∫
π100
0
|sin| dxx
∫
=
π
0
|sin|100 dxx
∫
=
π
0
sin100 xdx
π
0
]cos[100 x?=
2002100 =×=
~ ?yvD ?Dy
è 16
!f
<<?
+
≥
=
01,
cos1
1
0,
)(
2
x
x
xxe
xf
x
∫
4
1
)2( dxxfp
3
,2 tx =?
!,dtdx =5
O;1,1?== tx
H?,2,4 == tx
H?
∫∫
=?∴
2
1
4
1
)()2( dttfdxxf
∫∫
+
+
=
2
0
0
1
2
cos1
dtte
t
dt
t
∫∫
=
2
0
2
0
1
2
)(
2
1
2
cos
2
2
tde
t
t
d
t
~ ?yvD ?Dy
2
0
0
1
2
2
1
]
2
[tan
t
e
t
=
2
1
2
1
2
1
tan
4
+?=
e
~ ?yvD ?Dy
+?+
ysa?s¥+??
T
?s¥DíE
dxxf
b
a
∫
)( dtttf
∫
′
=
β
α
)()]([
=al2
a
}f
?uW¥s,
∫∫
=
2
0
2
0
)(cos)(sin
ππ
dxxfdxxf
∫∫
=
ππ
π
00
)(sin
2
)(sin dxxfdxxxf
~ ?yvD ?Dy
± I5
·p
∫
2
2
2
1xx
dx
¥3E?¥pi??
¥3E,
3
7
,sectx =
,
4
3
3
2
:
π
→
π
t,sectan tdttdx =
∫
2
2
2
1xx
dx
tdtt
tt
tansec
tansec
1
4
3
3
2
=
∫
π
π
dt
∫
π
π
=
4
3
3
2
.
12
π
=
~ ?yvD ?Dy
± I53s
9
??=?
^p¥,
tx sec=Q
,
4
3
,
3
2
ππ
∈t
,0tan <t
.tantan1
2
ttx ≠=?
??3E
^
∫
2
2
2
1xx
dx
tx sec=
tdtt
tt
tansec
tansec
1
4
3
3
2
∫
π
π
dt
∫
π
π
=
4
3
3
2
.
12
π
=
~ ?yvD ?Dy
~ ?yvD ?Dy
BaA b5
a
∫
π
π
=
π
+
3
)
3
sin( dxx @@@@@@@@@@@@@@@@@@@
a
∫
=?
π
θθ
0
3
)sin1( d @@@@@@@@@@@@@@@@
a =?
∫
2
0
2
2 dxx @@@@@@@@@@@@@
a =
∫
2
1
2
1
2
2
1
)(arcsin
dx
x
x
@@@@@@@@@@@
5a
∫
=
++
5
5
24
23
12
sin
dx
xx
xx
________________________,.
5
~ ?yvD ?Dy
=a 9
/
?s
a
∫
2
0
3
cossin
π
d a
∫
+
3
1
22
1 xx
dx
a
∫
1
4
3
11 x
dx
a
∫
π
π
2
2
3
coscos dxxx
a
∫
π
+
0
2cos1 dxx a
∫
2
2
4
cos4
π
π
θ dx
a
∫
++?
1
1
2322
)11( dxxxxx
a
∫
2
0
3
},max{ dxxx
a
∫
2
0
dxxx λ
1?
λ
~ ?yvD ?Dy
?a
!
<
+
≥
+
=
H?
H?
0,
1
1
0,
1
1
)(
x
e
x
x
xf
x
p
∫
2
0
)1( dxxf
1a
! []baxf,)(
??
£
ü
∫∫
+=
b
a
b
a
dxxbafdxxf )()(
?a£
ü
∫∫
=?
1
0
1
`0
)1()1( dxxxdxxx
mnnm
~ ?yvD ?Dy
Ba£
ü
∫∫
+=
a
a
a
dxxfxfdxxf
0
)]()([)(
ip
∫
π
π
+
4
4
sin1 x
dx
ta
! []1,0)( xf
??
£
ü
∫∫
π
π
=
2
0
2
0
)cos(
4
1
)cos( dxxfdxxf,
~ ?yvD ?Dy
5s?
Baa a
3
4
π a
2
π
a
32
3
π
a
=aa
4
1
a
3
32
2? a 2ln21? a
3
4
a 22 a π
2
3
a
4
π
a
8
π
a
4
17
a
H? 0≤λ
λ2
3
8
? 20 ≤<λ
H
3
2
3
8
3
λ
λ +? ? 2>λ
H
λ2
3
8
+?
?a )1ln(1
1?
++ e
Ba