~ ?yvD ?Dy
?
tc
íf
±sD
~ ?yvD ?Dy
?B?
íf
¥'à
Q
~ ?yvD ?Dy
! ),(
000
yxP
^ xoy
ü
¥B?? δ
^

B?
D? ),(
000
yxP  ?l? δ¥? ),( yxP
¥ ?8?1?
0
P¥ δ
#×:1 ),(
0
δPU 

1
#×
0
P
δ
),(
0
δPU { }
δ<= ||
0
PPP
,})()(|),{(
2
0
2
0
δ<?+?= yyxxyx
Baíf
¥à
Q
)(),(,
00
PUPU e:5 ?? <? δδ
~ ?yvD ?Dy

2 u×
.
)(
¥
=?15?
¥
B
#×B?? ?Ti?
^
ü
¥
^
ü
¥B??"
!
EP
EPUP
PE
.EE¥
=?
?
E
P
.1 7"5?
¥??
^
=? ?T?"
E
E
}41),{(
22
1
<+<= yxyxE
è ?
'1 7"
~ ?yvD ?Dy
¥H??15? V[?
?
9'
& V[
?¥?
?9μ?
?
¥??¥ ?B?
#×
=;μ
?T?
EPE
EPE
EP
E
P
¥H?¥H??¥ ?8?1 EE
^ ?Y¥ 7"
5? O?|L
¥??
?
?2  ? ?
?? V¨|L
=
^ 7" ?T?
!
D
D
DD
~ ?yvD ?Dy
?Y¥ 7"?1 u× 7 u×
}.41|),{(
22
<+< yxyx è ? x
y
o
7 u× ?]
¥H?B ?1> u×,
}.41|),{(
22
≤+≤ yxyx è ?
x
y
o
~ ?yvD ?Dy
}0|),{( >+ yxyx
μ?> u×
í? 7 u×
x
y
o
è ?
í??"1μ??"?5?15?

P¤ ?Ti?
??"
E
ryxyxE
rE
}|),{(
,
222
<+?
}41|),{(
22
≤+≤ yxyx
~ ?yvD ?Dy

3
?
! E
^
ü
¥B??" P
^
ü
¥
B?? ?T? P¥ ?B?
#×
=9μíK
??
??" E5? P1 E ¥
?,
n
=?B?
^
?
a
ü
oH?? V
^
?
}10|),{(
22
≤+< yxyx
è
(0,0);
^H??9
^
?
~ ?yvD ?Dy
p ?" E¥
? V[
? E9 V[?
? E
}10|),{(
22
≤+< yxyx è ?,
(0,0)
^
???
?"
}1|),{(
22
=+ yxyx è ?,
H?
¥??
^
?9?
?"
~ ?yvD ?Dy

4 n? bW
! n1 |?¥B?1 ?
á
ì? ní
F
),,,(
21 n
xxxL¥ ?81 n? bW7
? ní
F ),,,(
21 n
xxxL?1 n? bW?¥B??
i
x ?1??¥? i?US,
nn? bW¥:|1
a
ü;
n
R
on? bW?
?W  ?
T
~ ?yvD ?Dy
),,,,(
21 n
xxxPL),,,,(
21 n
yyyQL
.)()()(||
22
22
2
11 nn
xyxyxyPQ?++?+?=L
pn? bW?
#×a u×?à
Q
{ }
n
RPPPPPU ∈<=,||),(
00
δδ
+
y1?
HL1
àa
ü
a
bW
?W¥  ?
3,2,1=n
=?aH??a u×a
??à
Q9 V?l
#×
!
?1
~ ?yvD ?Dy
=aíf
¥à
Q

! D
^
ü
¥B??" ?T?
??
DyxP ∈),( M
 z?vB?¥E59μ ??¥′

?5? z
^M
 yx,¥=íf
:1
),( yxfz = 
:1 )(Pfz = 
? 2≥n
H níf
d?1íf
,
íf
?]"μ?l×a′×a1M
a
yM
?à
Q,
?
1 V?l ?í# ?í[
f

~ ?yvD ?Dy
è p ¥?l×
2
22
)3arcsin(
),(
yx
yx
yxf

=
3
>?

0
13
2
22
yx
yx
>
≤+≤
2
22
42
yx
yx
p?l×1 }.,42|),{(
222
yxyxyxD >≤+≤=
~ ?yvD ?Dy
=íf
¥m?
),( yxfz =
!f
),( yxfz = ¥?l×1 D? ?i
|?¥ DyxP ∈),( ?¥f
′1
),( yxfz = ?"[ x1USa y1:U
Sa z1
US bWü ??B? ),,( zyxM 
? x |R D
B M?
H¤B? bW?"
}),(),,(|),,{( Dyxyxfzzyx ∈= ???"?
1=íf
¥m?,

?/:m
~ ?yvD ?Dy
=íf
¥m?Yè
^Bf w
,
~ ?yvD ?Dy
x
y
z
o
xyz sin=
è ?,
m? ?·m,
2222
azyx =++
è ?,
Pm o
,
}.),{(
222
ayxyxD ≤+=
222
yxaz=
.
222
yxaz=
?′s|,
~ ?yvD ?Dy
?l  
!f
),( yxfz = ¥?l×1
),(,
000
yxPD
^ 
? ?T? ?ió?¥?
ε 9i?
δ 
P¤?
a??
T
δ<?+?=<
2
0
2
00
)()(||0 yyxxPP ¥B M
??μ ε<? |),(| Ayxf ? ?5? A 1f
),( yxfz = ?
0
xx → 
0
yy →
H¥K
:1 Ayxf
yy
xx
=


),(lim
0
0
?aíf
¥K

)(),(
0
PPAyxf →→
,
~ ?yvD ?Dy
a
ü

1?l? ¥Z
T
^ ?i¥
0
PP →

2=íf
¥K9?=×K );,(lim
0
0
yxf
yy
xx



3=íf
¥K
E5DBíf
?

~ ?yvD ?Dy
è p£
£
0
1
sin)(lim
22
22
0
0
=
+
+


yx
yx
y
x
0
1
sin)(
22
22
+
+
yx
yx
22
22
1
sin
yx
yx
+
+=
22
yx +≤
,0>?ε
,εδ =?
?
Hδ<?+?<
22
)0()0(0 yx
ε<?
+
+ 0
1
sin)(
22
22
yx
yx
e2
? ?
~ ?yvD ?Dy
è pK,
)sin(
lim
22
2
0
0
yx
yx
y
x
+


3
22
2
0
0
)sin(
lim
yx
yx
y
x
+


,
)sin(
lim
22
2
2
2
0
0
yx
yx
yx
yx
y
x
+
=


?
yx
yx
y
x
2
2
0
0
)sin(
lim


u
u
u
sin
lim
0→
,1=
22
2
yx
yx
+
x
2
1
≤,0
0
→?
→x
.0
)sin(
lim
22
2
0
0
=
+



yx
yx
y
x
yxu
2
=
~ ?yvD ?Dy
è £
ü ?i
£
26
3
0
0
lim
yx
yx
y
x
+


|
,
3
kxy =
26
3
0
0
lim
yx
yx
y
x
+


626
33
0
3
lim
xkx
kxx
kxy
x
+
=
=

,
1
2
k
k
+
=
′
k¥?]7M
#K?i
~ ?yvD ?Dy
?i,
43 26
3
0
0
lim
yx
yx
y
x
+


,
26
3
m?
yx
yx
z
+
=
lb
lb
~ ?yvD ?Dy

1
7 ),( yxP  kxy = t_? ),(
000
yxP  ?
K′D kμ15 VyK?i

2s
??] tíZ
T
P ),(lim
0
0
yxf
yy
xx


i
?
??M?N
H9 Vy ),( yxf ?
),(
000
yxP )K?i
??K ?i ¥ZE
~ ?yvD ?Dy
?l  
! níf
)(Pf ¥?l×1?"
0
,PD
^ 
? ?T? ?ió?¥?
ε
9i?
δ 
P¤?
a??
T
δ<< ||0
0
PP ¥B M? DP∈ ?μ
ε<? |)(| APf ? ?5? A1 níf
)(Pf
?
0
PP →
H¥K:1
 APf
PP
=

)(lim
0

níf
¥K ?¨?f
¥?
Tμ
~ ?yvD ?Dy

! níf
)(Pf ¥?l×1?"
0
,PD
^ 
? O DP ∈
0
 ?T )()(lim
0
0
PfPf
PP
=

5? níf
)(Pf ?
0
P) ?? 
!
0
P
^f
)(Pf ¥?l×¥
? ?T
)(Pf ?
0
P)? ??5?
0
P
^f
)(Pf ¥
W?,
1aíf
¥ ???
?l
~ ?yvD ?Dy
è )
f
=

+
+
=
)0,0(),(,0
)0,0(),(,
),(
22
33
yx
yx
yx
yx
yxf
 (0,0))¥ ???
3
|
,cosθρ=x
θρsin=y
)0,0(),( fyxf?
)cos(sin
33
θθρ +=
ρ2<
~ ?yvD ?Dy
ερ <<? 2)0,0(),( fyxf
#f
 (0,0)) ??,
),0,0(),(lim
)0,0(),(
fyxf
yx
=

,0>?ε,
2
ε
δ =?
?
H
δ<+<
22
0 yx
~ ?yvD ?Dy
è )
f
=+
≠+
+
=
0,0
0,
),(
22
22
22
yx
yx
yx
xy
yxf
 (0,0)¥ ???
3 | kxy =
22
0
0
lim
yx
xy
y
x
+


222
2
0
lim
xkx
kx
kxy
x
+
=
=

2
1 k
k
+
=
′
k¥?]7M K?i
#f
 (0,0))? ??
~ ?yvD ?Dy
> u×
 ??f
¥?é
μ?> u× %
¥í ??f
 %
à
 |¤
¥Kv′Kl′òBQ
μ?> u× %
¥í ??f
 ?
T %
 |¤
??]¥f
′5
 %

|¤o??
′-W¥ ?′à
BQ

1Kv′Kl′? ?

2o′? ?
~ ?yvD ?Dy
í?f
?í[
T#'?f
üVμKQ¥
15
ˉ??
?¥ V
¨B?
T0
V
U¥íf
? í?f
B Mí?f
 ?l u×
=
^ ??¥
?l u×
^·c?l×
=¥ u×> u×
~ ?yvD ?Dy
è,
11
lim
0
0
xy
xy
y
x
+


p
3
)11(
11
lim
0
0
++
+
=


xyxy
xy
y
x
e
T
11
1
lim
0
0
++
=


xy
y
x
.
2
1
=
).()(lim
)()(
)()(lim
00
0
0
0
PfPfP
PfPfP
PfPf
PP
PP
=


) ???
^?
¥?l×¥
=?5
^
 O
^?f
H ?TB?1 p
~ ?yvD ?Dy
íf
K¥à
Q
íf
??¥à
Q
> u×
 ??f
¥?é

?i tíZ
T¥ ?i? 
1al2
íf
¥?l
~ ?yvD ?Dy
?? ),( yx "í
H
ü
wL t_?
? ),(
00
yx
Hf
),( yxf ? t_? A
?
? Ayxf
yxyx
=

),(lim
),(),(
00
$
± I5
~ ?yvD ?Dy
± I53s
?
,
è
,
)(
),(
242
23
yx
yx
yxf
+
=
)0,0(),( →yx
|
,kxy =
2442
223
)(
),(
xkx
xkx
kxxf
+
=
0
0
→?
→x
?
^ ?i,),(lim
)0,0(),(
yxf
yx →
ey1 ? |
,
2
yx =
244
26
2
)(
),(
yy
yy
yyf
+
=
.
4
1

~ ?yvD ?Dy
Ba A b5
a ?
y
x
xyyxyxf tan),(
22
+=
5 ),( tytxf @@@@
a ?
xy
yx
yxf
2
),(
22
+
=
5 =? )3,2(f @@@@@@@@@@
 =),1(
x
y
f @@@@@@@@@@@@@@@@
a ? )0()(
22
>
+
= y
y
yx
x
y
f
5 =)(xf @@@@@@@@
a ?
22
),( yx
x
y
yxf?=+
5 =),( yxf @@@@@@@@@
f
)1ln(
4
22
2
yx
yx
z

= ¥?l×
^@@@@@@@@@@
5
~ ?yvD ?Dy
af
yxz?= ¥?l×
^@@@@@@@@@@@@@@
af
x
y
z arcsin= ¥?l×
^@@@@@@@@@@@@@@@
af
xy
xy
z
2
2
2
2
+
= ¥W?
^@@@@@@@@@@@@@@@@
=a p/
òK
a
xy
xy
y
x
42
lim
0
0
+?



a
x
xy
y
x
sin
lim
0
0



a
2222
22
0
0
)(
)cos(1
lim
yxyx
yx
y
x
+
+?



~ ?yvD ?Dy
?a £
ü 0lim
22
0
0
=
+


yx
xy
y
x

1a£
üK
yx
xy
y
x
+
+


11
lim
0
0
?i
~ ?yvD ?Dy
Baa ),(
2
yxft  a
12
13

 ),( yxf  
a
x
x
2
1+
 a
y
y
x
+
1
1
2
 
a{ }xyyxyx 4,10),(
222
≤<+<  
a{ }yxyxyx ≥≥≥
2
,0,0),(  
a{ }xyxxyx ≤≤?>,0),( 
 { }xyxxyx?≤≤<∪,0),(  
a{ }02),(
2
=? xyyx 
=aa
4
1
 a a ∞+ 
5s?
~ ?yvD ?Dy
?i,
43 26
3
0
0
lim
yx
yx
y
x
+


,
26
3
m?
yx
yx
z
+
=
~ ?yvD ?Dy
43 26
3
0
0
lim
yx
yx
y
x
+


,
26
3
m?
yx
yx
z
+
=
?i,
~ ?yvD ?Dy
43 26
3
0
0
lim
yx
yx
y
x
+


,
26
3
m?
yx
yx
z
+
=
?i,
~ ?yvD ?Dy
43 26
3
0
0
lim
yx
yx
y
x
+


,
26
3
m?
yx
yx
z
+
=
?i,
~ ?yvD ?Dy
43 26
3
0
0
lim
yx
yx
y
x
+


,
26
3
m?
yx
yx
z
+
=
?i,
~ ?yvD ?Dy
43 26
3
0
0
lim
yx
yx
y
x
+


,
26
3
m?
yx
yx
z
+
=
?i,
~ ?yvD ?Dy
43 26
3
0
0
lim
yx
yx
y
x
+


,
26
3
m?
yx
yx
z
+
=
?i,
~ ?yvD ?Dy
43 26
3
0
0
lim
yx
yx
y
x
+


,
26
3
m?
yx
yx
z
+
=
?i,
~ ?yvD ?Dy
43 26
3
0
0
lim
yx
yx
y
x
+


,
26
3
m?
yx
yx
z
+
=
?i,
~ ?yvD ?Dy
43 26
3
0
0
lim
yx
yx
y
x
+


,
26
3
m?
yx
yx
z
+
=
?i,
~ ?yvD ?Dy
43 26
3
0
0
lim
yx
yx
y
x
+


,
26
3
m?
yx
yx
z
+
=
?i,
~ ?yvD ?Dy
43 26
3
0
0
lim
yx
yx
y
x
+


,
26
3
m?
yx
yx
z
+
=
?i,