~ ?yvD ?Dy
?
B?
ê?
¥+?¨ (= )
Z_?
D0
~ ?yvD ?Dy
! w
Z?1
0),,( =zyxF
)},(),(),({
000
tttT ωψφ
′′′
=
r
wL M)¥ M_

 w
 ? |BHY
V? M¥ wL
,
)(
)(
)(
:
=
=
=
Γ
tz
ty
tx
ω
ψ
φ
Ba w
¥ M
ü
DEL
n
r
T
r
M
~ ?yvD ?Dy
)},,(),,,(),,,({
000000000
zyxFzyxFzyxFn
zyx
=
r
7
5
,Tn
r
r

?? wL
^ w
YV M¥ ?iB
H wL
ì M¥ ML?D]B_
 n
r
<°
# w
YV M¥B M wL? M¥ ML?
]B
ü
??
ü
?1 w
? M¥ M
ü
,
M
ü
Z?1
0))(,,(
))(,,())(,,(
0000
00000000
=?+
+?
zzzyxF
yyzyxFxxzyxF
z
yx
~ ?yvD ?Dy
YV? ),,(
000
zyxM 7<°? M
ü
¥°L
?1 w
??¥EL,
ELZ?1
),,(),,(),,(
000
0
000
0
000
0
zyxF
zz
zyxF
yy
zyxF
xx
zyx
=
=
)},,(),,,(),,,({
000000000
zyxFzyxFzyxFn
zyx
=
r
w
 M)¥E_
'
<°? w
 M
ü
¥_
?1 w
¥E_
,
~ ?yvD ?Dy
+
y1 bW w
Z??1 ),( yxfz =
w
 M)¥ M
ü
Z?1
,))(,())(,(
0000000
zzyyyxfxxyxf
yx
=?+?
w
 M)¥ELZ?1
.
1),(),(
0
00
0
00
0
=
=
zz
yxf
yy
yxf
xx
yx
,),(),,( zyxfzyxF?=
7
~ ?yvD ?Dy
))(,())(,(
0000000
yyyxfxxyxfzz
yx
+?=?
M
ü
?¥
US
¥9

¥ ?±s?f
),(),(
00
yxyxfz =
y1 w
 M)¥ M
ü
Z?1
?±s¥+il
),( yxfz =  ),(
00
yx ¥ ?±sV
U
w
),( yxfz = ? ),,(
000
zyx )¥
M
ü
¥?¥
US¥9
,
~ ?yvD ?Dy
? αaβaγV
U w
¥E_
¥Z_?
iL?E_
¥Z_
^_
¥'
P¤
D z
�_
?¥? γ
^ ì?5E_
¥Z_
?? 1
,
1
cos
22
yx
x
ff
f
++

,
1
cos
22
yx
y
ff
f
++

.
1
1
cos
22
yx
ff ++

),(
00
yxff
xx
=
),(
00
yxff
yy
=
?
~ ?yvD ?Dy
è pè
t
1
22
+= yxz ? )4,1,2(
)¥ M
ü
#ELZ?,
3
,1),(
22
+= yxyxf
)4,1,2()4,1,2(
}1,2,2{?= yxn
r
},1,2,4{?=
M
ü
Z?1,0)4()1(2)2(4 =+? zyx
,0624 =+? zyx
ELZ?1
.
1
4
2
1
4
2
=
=
zyx
~ ?yvD ?Dy
è p w
32 =+? xyez
z
? )0,2,1( )¥
M
ü
#ELZ?,
3
,32),,(?+?= xyezzyxF
z
,42
)0,2,1()0,2,1(
==

yF
x
,22
)0,2,1(
)0,2,1(
==

xF
y
,01
)0,2,1(
)0,2,1(
=?=

z
z
eF
7
M
ü
Z?
ELZ?
,0)0(0)2(2)1(4 =+?+? zyx
,042 =?+? yx
.
0
0
1
2
2
1?
=
=
zyx
~ ?yvD ?Dy
è p w
2132
222
=++ zyx
ü??
ü
064 =++ zyx ¥ò M
ü
Z?,
3
! 1 w
¥ M?,
),,(
000
zyx
M
ü
Z?1
0)(6)(4)(2
000000
=?+?+? zzzyyyxxx
G5i M
ü
Z?
ü??X?
ü
¤
,
6
6
4
4
1
2
000
zyx
==
.2
000
zyx ==?
~ ?yvD ?Dy
y1
^ w
¥ M?
),,(
000
zyx
,1
0
±=∴ x
p M?1
@Z?
),2,2,1( ),2,2,1(
0)2(12)2(8)1(2 =?+?+? zyx
2164 =++? zyx
0)2(12)2(8)1(2 =+?+?+? zyx
2164?=++? zyx
M
ü
Z? (1)
M
ü
Z? (2)
~ ?yvD ?Dy
L è B véZ?¥á
e
1???¥US
^
(1,1) (5,1) (1,3) (5,3)USe?)μB?

Pá
e
s £L?e
 ?iB?)¥
?D???e?¥  ??Q1 (3,2))μB
?
Vù?o
V?
I
1Z_
??
K y
?r?
 y¥1?$
ù5¥
Lé ?? £M ?MK?
¥Z_

'0Z_
?
=aZ_?
D0ù5¥4
~ ?yvD ?Dy
)
f
B? P
BZ_
¥M
qù5
),( yxfz =
?aZ_?
¥?l
o
y
x
l
P

x?
y?
P
?
L
=μ?l1?
¥
B
#×
?
!f
lP
PUyxP
yxfz
)(),(
),(=
).(
),(,
pUPl
yyxxP
lx


+?+

¥
6B? O1
i
!1
¥?à?_?
L
!

?m
~ ?yvD ?Dy
ρ=

|| PPQ
,)()(
22
yx?+?=
),,(),( yxfyyxxfz+?+=? O
?" t?
H
P
′ P
l
ρ
ρ
),(),(
lim
0
yxfyyxxf+?+

,
ρ
z?
I
n
^?i$
~ ?yvD ?Dy
.
),(),(
lim
0
ρ
ρ
yxfyyxxf
l
f+?+
=

G?lf
),( yxf ? P" xà?_ }0,1{
1
=e
r
a
yà?_ }1,0{
2
=e
r
¥Z_?
sY1
yx
ff,
" xàμ_a yàμ_¥Z_?
^
yx
ff,,
¥Z_?
Z_5??K1f
?

H ?TN1¥Ki t?"?
-1′
?W¥  ?
Df
¥9
?l
lP
PlP
yxPP
yxfyyxxf

+=

++
22
)()(
),(),(
ρ

:1
~ ?yvD ?Dy
? ?  ?Tf
),( yxfz= ? ),( yxP
^ V±
s¥
*
f
?? ?iZ_-¥Z_?
?i Oμ sincos
y
f
x
f
l
f
+
=

 1 xà?Z_-¥?
£
ü ??f
V±59
 VV
U1
)(),(),( ρoy
y
f
x
x
f
yxfyyxxf +?
+?
=+?+
H]"[

¤?
~ ?yvD ?Dy
cos
sin
ρ
ρ
ρρρ
)(),(),( oy
y
fx
x
fyxfyyxxf
+
+
=
+?+
#μZ_?
ρ
ρ
),(),(
lim
0
yxfyyxxf+?+

.sincos
y
f
x
f
+
=
=
l
f
~ ?yvD ?Dy
è pf
y
xez
2
= ? )0,1(P )V? )0,1(P
?? )1,2(?Q ¥Z_¥Z_?
,
3
# xà?Z_ l
r
¥?
4
π
=?,;1
)0,1(
2
)0,1(
==
y
e
x
z
Q
,22
)0,1(
2
)0,1(
==
y
xe
y
z
pZ_?
)
4
sin(2)
4
cos(
π
+
π
=
l
z
.
2
2
=
? úZ_ l
r
'1 }1,1{?=PQ,
~ ?yvD ?Dy
è pf
22
),( yxyxyxf +?= ?
1 1
D xàZ_C?1 α¥Z_
L l
r
¥Z_?
,i
ù8"¥Z_
NZ_?


1Kv′ 
2Kl′ 
3??
,$
3
αα sin)1,1(cos)1,1(
)1,1(
yx
ff
l
f
+=
?Z_?
¥9

T?
,sin)2(cos)2(
)1,1()1,1(
αα xyyx?+?=
~ ?yvD ?Dy
α+α= sincos
),
4
sin(2
π
+α=
#

1
?
4
π

H
Z_?
r?Kv′ 2;

2
?
4


H
Z_?
r?Kl′ 2? ;

3
?
4


4


H
Z_?
?? 0.
~ ?yvD ?Dy
? ?íf
),,( zyxfu= 
 bWB?
),,( zyxP "Z_ L ¥Z_?
 V?l
1
,
),,(),,(
lim
0
ρ
ρ
zyxfzzyyxxf
l
f+?+?+
=

w< V¤ ?íf
Z_?
¥?l

?
222
)()()( zyx?+?+?=ρ 
~ ?yvD ?Dy
] ??f
N? V±
H
*
f
??
 ?iZ_ L ¥Z_?
?i Oμ
.coscoscos γβα
z
f
y
f
x
f
l
f
+
+
=
!Z_ L ¥Z_?1 γβα,,
,cosαρ=?x
,cosβρ=?y
,cosγρ=?z
~ ?yvD ?Dy
è
! n
r
^ w
632
222
=++ zyx ?
)1,1,1(P )¥·_?§¥E_
 pf
2
1
22
)86(
1
yx
z
u += N)Z_ n
r
¥Z_
?
,
3
7
,632),,(
222
++= zyxzyxF
,44 ==

PP
x
xF
,66 ==

P
P
y
yF
,22 ==

P
P
z
zF
# { }
zyx
FFFn
′′′
=,,
r
{ },2,6,4=
,142264
222
=++=n
r
Z_??1
~ ?yvD ?Dy
,
14
2
cos =α
,
14
3
cos =β
.
14
1
cos =γ
P
P
yxz
x
x
u
22
86
6
+
=
;
14
6
=
P
P
yxz
y
y
u
22
86
8
+
=
;
14
8
=
P
P
z
yx
z
u
2
22
86 +
=
.14?=
P
P
z
u
y
u
x
u
n
u
)coscoscos( γβα
+
+
=
r
.
7
11
=#
~ ?yvD ?Dy
?l
!f
),( yxfz = 
ü
u× D
= μ
B¨ ??
ê?
5?
B? DyxP ∈),( 
? V?B?_
 j
y
f
i
x
f
rr
+
?_
?1f
),( yxfz = ? ),( yxP ¥0:1
=),( yxgradf j
y
f
i
x
f
rr
+
,
1a0¥à
Q
,K y
'BZ_9F¥
f
?ù5 P
~ ?yvD ?Dy
sincos
y
f
x
f
l
f
+
=
}sin,{cos},{
=
y
f
x
f
eyxgradf
r
= ),(,cos|),(| θyxgradf=
? )),((
,
eyxgradf
r

? 1)),,(cos( =eyxgradf
r
H
l
f
μKv′,
! jie
rr
r
sincos +=
^Z_ l
r
¥?ê_

?Z_?

T?
~ ?yvD ?Dy
f

?¥0
^?"B?_

¥
Z_D |¤KvZ_?
¥Z_Bá,7
¥
1
Z_?
¥Kv′0¥
1
2
2
|),(|
+
=
y
f
x
f
yxgradf,
2
?
x
f
?1
,
H
xà?0¥?¥? M1`
x
f
y
f
=θtan 
gradf
gradf?
P
~ ?yvD ?Dy
),( yxfz =
+
 V
UB? w
w
$
ü
?¤ cz =
,
),(
=
=
cz
yxfz
¤ wL xoy
g? ?m
o
y
x
2
),( cyxf =
1
),( cyxf =
cyxf =),(
?úL
),( yxgradf
01?úL
¥E_

P
~ ?yvD ?Dy
?úL¥E
lb
lb
~ ?yvD ?Dy
m?# ?úLm?f
xyz sin=
è ?,
~ ?yvD ?Dy
0D?úL¥1"
_?

¥Z?f
??ELZ_
?ú¥?úL70¥
′?′??¥?úL·_
V
L¥B?Z_M] O
??¥EúL
¥?¥0¥Z_D?
?f
cyxf
P
yxPyxfz
=
=
),(
),(),(
~ ?yvD ?Dy
?íf
),,( zyxfu=  bW u× G
= μ
B¨ ??
ê?
5?
B? GzyxP ∈),,( 
? V?lB?_
 (0)
.),,( k
z
f
j
y
f
i
x
f
zyxgradf
rrr
+
+
=
?
?=íf
N09
^B?_

Z_D |¤KvZ_?
¥Z_Bá 

1Z_?
¥Kv′,
0¥à
Q V[w<? ?íf
~ ?yvD ?Dy
?
1,
! w
czyxf =),,( 1f
),,( zyxfu=
¥?

Nf
? ),,( zyxP ¥0¥Z_D
V? P ¥?

czyxf =),,( ??¥EL¥B
?Z_M] OV
′??¥?

·_
′?
ú¥?

70¥
??f
??ELZ
_¥Z_?
,
~ ?yvD ?Dy
è pf
yxzyxu 2332
222
+++= ?
)2,1,1( )¥0iù
't?)01
,$
3 ?09

T¤
k
z
u
j
y
u
i
x
u
zyxgradu
rrr
+
+
=),,(
,6)24()32( kzjyix
rrr
+?++=
#
.1225)2,1,1( kjigradu
rrr
++=
 )0,
2
1
,
2
3
(
0
P )01 0.
~ ?yvD ?Dy
2aZ_?
¥à
Q
3a0¥à
Q
4aZ_?
D0¥1"

?iZ_?
DB?
a
ê?
¥ uY 

?i0
^B? _
 
?al2
.
),(
K y¥Z_
??9é0¥Z_ü
^f
yxf
1a w
¥ M
ü
DEL

pE_
¥Z_??
H?i ?| 
~ ?yvD ?Dy
± I5
Ba ?T
ü
01633 =+?+ zyx λ D? o
163
222
=++ zyx M M p λ,
=a)
f
22
),( yxyxfz +==  )0,0(
?)¥
ê?
^?i$Z_?
^?i$
~ ?yvD ?Dy
± I5B3s
},2,2,6{
000
zyxn =
r
! M?
),,,(
000
zyx
G5i? M_
1
}3,,3{?λ
3
22
3
6
000
==
zyx
λ
,
00
xy λ=?,3
00
xz?=
M?
@ w

ü
Z?
,
01693
01693
2
0
2
0
22
0
00
2
0
=?++
=+++
xxx
xxx
λ
λ
.2±=?λ
~ ?yvD ?Dy
x
fxf
x
z
x

=
→?
)0,0()0,(
lim
0
)0,0(
.
||
lim
0
x
x
x
=
→?
] ?
)0,0(
y
z
y
y
y
=
→?
||
lim
0
#
?
ê?
(?i,
± I5=3s
~ ?yvD ?Dy
 ?iZ_ },,{ zyxl =
r
¥Z_?
,
ρ
ρ
)0,0(),(
lim
0
)0,0(
fyxf
l
z
=

1
)()(
)()(
lim
22
22
0
=
+?
+?
=

yx
yx
ρ
# ?iZ_¥Z_?
(i OM?,
~ ?yvD ?Dy
Ba A b5
a wL
2
,
1
,
1
tz
t
t
y
t
t
x =
+
=
+
= ?? 1=t ¥?
) MLZ?1@@@@@@@@@@@@@@@@
E
ü
Z?1@@@@@@@@@@@@@@@@
a w
3=+? xyze
z
? )0,1,2( )¥ M
ü
Z?1
@@@@@@@@@@@@@@@@@@
ELZ?1@@@@@@@@@@@@@@@@@@
=a p wL
32
,,tztytx ===
¥?
P??¥ M
L
ü??
ü
42 =++ zyx 
?a p o
6
222
=++ zyx D
t
22
yxz += ¥?L
 )2,1,1( )¥ MLZ?
5B
~ ?yvD ?Dy
1a p? o
12
222
=++ zyx

ü??
ü

 02 =+? zyx ¥ M
ü
Z?
?a
k£ w
)0( >=++ aazyx
 ??)¥
 M
ü
òUSà
¥? -?? a
~ ?yvD ?Dy
Baa 011682,
8
1
4
2
1
2
1
=?+?
=
=
zyx
zy
x

a
=
=
=?+
0
2
1
1
2
,042
z
yx
yx 
=a )
27
1
,
9
1
,
3
1
()1,1,1(
21
PP # 
?a
=?
=?+
=
=
02
02
0
2
1
1
1
1
z
yx
zyx

1a
2
11
2 ±=+? zyx 
5Bs?
~ ?yvD ?Dy
Ba A b5
af
22
yxz += ? )2,1( )V? )2,1( ??
 )32,2( + ¥Z_¥Z_?
1@@@@@@@@@@@@@
a
! xyzyxzyxf +++=
222
32),,( zyx 623+
5 =)0,0,0(gradf @@@@@@@@@@@@@@@@@@
aX??
,),,(
2
2
2
2
2
2
c
z
b
y
a
x
zyxu ++=
5 u ?¥0
Z_¥Z_?
^@@@@@@@@@@@@@@@@@@
a?_
?

a 1μ
]?
^·_


a D
?f
 ),,( zyxu ¥0μ1"@@@@@@@@@@@@@@@@@@
5=
~ ?yvD ?Dy
?a
! vu,?
^ zyx,,¥f

vu,¥ò
ê?
?i O
??
£
ü ugradvvgraduuvgrad +=)(
1a p
2
2
2
2
2
2
c
z
b
y
a
x
u ++= ? ),,(
000
zyxM )?¥_
?
0
r ¥Z_?

ù cba,, μ
I
11"
HNZ_?
??0¥

=a pf
)(1
2
2
2
2
b
y
a
x
z +?= ? )
2
,
2
(
ba
) wL
 1
2
2
2
2
=+
b
y
a
x
??¥
=ELZ_¥Z_?

~ ?yvD ?Dy
Baa 321+  a
→→→
kji 623 
a gradu
c
z
b
y
a
x
=++
2
2
2
2
2
2
)
2
()
2
()
2
( 
a gradua =


=a )(2
1
22
ba
ab
+ 
1a cba
zyx
zyxu
r
u
M
==
++
=
;
),,(2
2
0
2
0
2
0
000
0

5=s?
~ ?yvD ?Dy
?úL¥E
~ ?yvD ?Dy
?úL¥E
~ ?yvD ?Dy
?úL¥E
~ ?yvD ?Dy
?úL¥E
~ ?yvD ?Dy
?úL¥E
~ ?yvD ?Dy
?úL¥E
~ ?yvD ?Dy
?úL¥E
~ ?yvD ?Dy
?úL¥E
~ ?yvD ?Dy
?úL¥E