~ ?yvD ?Dy
?=?
US¥ wLs
~ ?yvD ?Dy
o x
y
A
B
L
Baù5¥4
1?n
M
i
M
1?i
M
2
M
1
M
i
x?
i
y?
L è M ? wL
T¥?
,,BAL →
jyxQiyxPyxF
rr
),(),(),( +=
è ?
T¥?
sé,),,(,),,(,
1111110
BMyxMyxMMA
nnnn
==

L
.)()(
1
jyixMM
iiii
rr
+=
.ABFW?=
~ ?yvD ?Dy
p
.]),(),([
1

=
+≈
n
i
iiiiii
yQxP ηξηξ
|K
.]),(),([lim
1
0

=

+=
n
i
iiiiii
yQxPW ηξηξ
λ

′
ú ?′
.),(),(
iiiiiii
yQxPW?+?≈? ηξηξ'

=
=
n
i
i
WW
1
o x
y
A
B
L
1?n
M
i
M
1?i
M
2
M
1
M
),(
ii
F ηξ
i
x?
i
y?
,),(
1 iiiii
MMFW
≈? ηξ
,),(),(),( jQiPF
iiiiii
rr
ηξηξηξ += |
~ ?yvD ?Dy
=aUS¥ wLs¥à
Q
1.?l
,0
.
),(,,
).,;,,2,1(
),(,
),,(),,(.
),(),,(,
1
11
01
111
222111
Hé¥Kv′
?T?òl
 ?i |?¥?
1?
!
?μ_l
s?ü
¥?¨
μ?
f
_;á wL
¥BHμ??
=V?1
!
→λ
ηξ?==?
===


ii
iiiiiiii
nii
nnn
MM
yyyxxx
BMAMniMM
nLyxM
yxMyxML
LyxQyxP
BAxoyL
L
L
~ ?yvD ?Dy
.),(lim),(
,(
),(
,),(
1
0
1
ii
n
i
i
L
n
i
iii
xPdxyxP
xLyxP
xP
=



=

=
ηξ
ηξ
λ
:T??= ? wLss
¥ wL
USμ_ wL
5?NK1f¥Ki
?
1?l
.),(lim),(
1
0
ii
n
i
i
L
yQdyyxQ?=


=

ηξ
λ
,),(),,( ?S$f
? yxQyxP
.?s
L
~ ?yvD ?Dy
2.iHq
.,
),(),,(
?= ? wLsi
 ??
H
;á wL? LyxQyxP
3.F?
T

∫∫
+=
+
L
LL
dyyxQdxyxP
dyyxQdxyxP
),(),(
),(),(
.,jdyidxdsjQiPF
rrrrr
+=+= ?
.

=
L
dsF
r
~ ?yvD ?Dy
w<
Γ bWμ_ wL
.),,(lim),,(
1
0
iii
n
i
i
xPdxzyxP?=


=

Γ
ζηξ
λ
.

Γ
++ RdzQdyPdx
.),,(lim),,(
1
0
iii
n
i
i
yQdyzyxQ?ζηξ=


=
→λ
Γ
.),,(lim),,(
1
0
iii
n
i
i
zRdzzyxR?ζηξ=


=
→λ
Γ
~ ?yvD ?Dy
?é
.
,)1(
21
21
∫∫∫
+++=+
LLL
QdyPdxQdyPdxQdyPdx
LLL 5s? ?Tü
5μ_ wL
Z_MQ¥
^D
^μ_ wL
!
,
,)2( LLL?
'US¥ wLsD wL¥Z_μ1,
∫∫
+?=+
LL
dyyxQdxyxPdyyxQdxyxP ),(),(),(),(
~ ?yvD ?Dy
?aUS¥ wLs¥9
,),(),(
,0)()(,
)(),(
,),(,
),(
),(
,
),(),,(
22
i
5 wLs O??
B¨ ?1
?¥> uW
 μ#[
????¥ ?V?
H?
M??1???
¥?
Z?1?
μ?l O ? wL
!

+


+

=
=
L
dyyxQdxyxP
tt
tt
BLALyxM
t
ty
tx
L
LyxQyxP
ψ?
βαψ?
β
α
ψ
? ?
~ ?yvD ?Dy
dttttQtttP
dyyxQdxyxP
L
)}()](),([)()](),([{
),(),(
ψψψ?
β
α

+

=
+


O
+
y f?
.)(:)1( baxxyyL ??1 ?1=
.)}()](,[)](,[{ dxxyxyxQxyxPQdyPdx
b
aL
∫∫

+=+5
.)(:)2( dcyyxxL ??1 ?1=
.]}),([)(]),([{ dyyyxQyxyyxPQdyPdx
d
cL
∫∫
+

=+5
.:;,?? ? βα
~ ?yvD ?Dy
.,,
)(
)(
)(
:)3( βα
ω
ψ
?? ?w< t
tz
ty
tx
=
=
=
Γ
dtttttR
ttttQ
ttttP
RdzQdyPdx
)}()](),(),([
)()](),(),([
)()](),(),([{
ωωψ?
ψωψ?
ωψ?
β
α

+

+

=
++


Γ
~ ?yvD ?Dy
(4)
 ? wLs-W¥ ó"
,
)(
)(
=
=
ty
tx
L
ψ

!μ_
ü
wL1
,,),( βα1)¥ ML_
¥Z_?
? yxL
∫∫
β+α=+
LL
dsQPQdyPdx )coscos(5
?
,
)()(
)(
cos
22
tt
t
ψ?
α

+


=
,
)()(
)(
cos
22
tt
t
ψ?
ψ
β

+


=

V[w<? bW wL
  Γ
~ ?yvD ?Dy
,,,),,( γβαΓ 1)¥ ML_
¥Z_?
? zyx
∫∫
ΓΓ
γ+β+α=++ dsRQPRdzQdyPdx )coscoscos(5

Γ
= dstA
r
r

Γ
= rdA
r
r
,

Γ
= dsA
t
r
V¨_
V
U
 ? },,{ RQPA=
r
},cos,cos,{cos γβα=t
r
},,{ dzdydxdstrd ==
r
r
μ_ wLí
.
¥g?_
1_
 tAA
t
r
r
)¥?ê M_

? ),,( zyxΓ
~ ?yvD ?Dy
è 1
.)1,1()1,1(
,
2
¥B
?
V1
tL ?9
BA
xyLxydx
L
=

3
¥?s1 x)1(
.xy ±=
∫∫∫
+=
OBAOL
xydxxydxxydx
∫∫
+?=
1
0
0
1
)( dxxxdxxx

=
1
0
2
3
2 dxx,
5
4
=
xy =
2
)1,1(?A
)1,1(B
~ ?yvD ?Dy
¥?s1 y)2(
,
2
yx =
∫∫
=
ABL
xydxxydx


=
1
1
22
)( dyyyy
.11?V?y

=
1
1
4
2 dyy
.
5
4
=
xy =
2
)1,1(?A
)1,1(B
~ ?yvD ?Dy
.)0,()0,()2(;
)1(
,
2
¥°L
à??V?
¥
???
?Z_ ??a??1e?a?
I
H??1
1 ?9
aBxaA
a
Ldxy
L

è 2
3
,
sin
cos
:)1(
=
=
θ
θ
ay
ax
LQ
M?V πθ 0
)0,(aA)0,( aB?

=
π
0
e
T
θθθ daa )sin(sin
22
~ ?yvD ?Dy
)0,(aA)0,( aB?
.
3
4
3
a?=
,0:)2( =yLQ
M?V aax?

=
a
a
dx0e
T,0=
ù5  $f
M] ???9M]?
^??]s2T?],

π
=
0
3
a )(cos)cos1(
2
θθ d?
~ ?yvD ?Dy
è 3
).1,1(),0,1(
)0,0(,,)3(;)1,1()0,0()2(;)1,1()0,0()1(
,2
2
2
2
GQ
^?? úμ_|L
¥B
?
V
tL
¥B
?
V
tL
1 ?9
BAOOAB
BOyx
BOxy
Ldyxxydx
L
=
=
+

2
xy =
)0,1(A
)1,1(B
3
.)1( ¥s1 x
,10,:
2
M?VxxyL =

+?=
1
0
22
)22( dxxxxxe
T

=
1
0
3
4 dxx
.1=
~ ?yvD ?Dy
)0,1(A
)1,1(B
2
yx =
.)2( ¥s1 y
,10,:
2
M?VyyxL =

+=
1
0
42
)22( dyyyyye
T

=
1
0
4
5 dyy
.1=
)0,1(A
)1,1(B
)3(


++
+=
AB
OA
dyxxydx
dyxxydx
2
2
2
2e
T
~ ?yvD ?Dy
,
 OA
,10,0 M?Vxy =
∫∫
+?=+
1
0
22
)002(2 dxxxdyxxydx
OA
.0=
,
 AB
,10,1 M?Vyx =
∫∫
+?=+
1
0
2
)102(2 dyydyxxydx
AB
.1=
10 +=∴e
T,1=
)0,1(A
)1,1(B
ù5  $f
M] ???9M]?
^??]7s2TM],
~ ?yvD ?Dy
è
ydzxdyzydxx
223
3?+

Γ
9
.)000()123(,¥°L
?V ||B||AΓ
3,
010203
:
=
=
Γ
zyx
01,→z
,2
3
:
=
=
=
Γ
zz
zy
zx
01,→z
=?+

ydzxdyzydxx
223
3
Γ
dzzzzzz ]2)3(2)2(33)3{(
22
0
1
3
+?


=
0
1
3
87 dzz
.
4
87
=
~ ?yvD ?Dy
,2
2
?é¥ wLs| wLs

+=
L
dyxxydxI;)1,1()0,0(
2
¥B
?
V
tL1 ? BOxyL =
è
3
)1,1(
x
y
o
,:
2
=
=
xy
xx
L
}2,1{ xT =
r
}
41
2
,
41
1
{
22
0
x
x
x
T
++
=
r
=+=

L
dyxxydxI
2
2 ds
x
x
x
x
xy
L
]
41
2
41
1
2[
2
2
2
+
+
+

.]
41
2
41
2
[
2
3
2
ds
x
x
x
xy
L
+
+
+
=

},cos,{cos βα=
~ ?yvD ?Dy
,2
2
?é¥ wLs| wLs

+=
L
dyxxydxI;)1,1()0,0(
2
¥B
?
V
tL1 = BOxyL
è
3
)1,1(?
x
y
o
,:
2
=
=
xy
xx
L
}2,1{ xT?=
r
}
41
2
,
41
1
{
22
0
x
x
x
T
+
+
=
r
=+=

L
dyxxydxI
2
2 ds
x
x
x
x
xy
L
]
41
2
41
1
2[
2
2
2
+
+
+

.]
41
2
41
2
[
2
3
2
ds
x
x
x
xy
L
+
+
+
=

},cos,{cos βα=
~ ?yvD ?Dy
1al2
1US wLs¥à
Q
2US wLs¥9
3
 ? wLs-W¥ ó"
~ ?yvD ?Dy
± I5
? wL L¥?
Z?D?
¥MS?ó?
-a
è ? L tax cos=  tay sin= 
]2,0[ π∈t a
^?è

kù ?V
U L¥Z
_
? LV
U1
¨
H?Z_a
I
H?Z_$
~ ?yvD ?Dy
± I53s
wLZ_??
¥MZ_7?,
è ? L tax cos=  tay sin=  ]2,0[ π∈t ?
? tV 0M? π2
H L |
I
H?Z_ ;
Q-? tV π2 M? 0
H L |
¨
H?Z_,
~ ?yvD ?Dy
°z A b5
a @@@@@@@@@@@@@@¥ wLsD wL¥Z_μ1
a
! 0),(),( ≠+

dyyxQdxyxP
L

5
 =
+
+


L
L
dyyxQdxyxP
dyyxQdxyxP
),(),(
),(),(
@@@@@@@@@@@@ 
a 
T =+

dyyxQdxyxP
L
),(),( 



+

β
α
φφφ? dttttQtttP )}()](,)([)()](,)([{ ?
/
 αK ?? L¥@@@@?
K β?? L¥@@@@? 
a
 ? wLs¥ ó"
^@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

5
~ ?yvD ?Dy
=a 9
/
US¥ wLs
a

L
xydx
L ? 1?? )0()(
222
>=+? aayax #
xà
??¥?B`K
=¥ u×¥??H? ?

I
H?Z_ ??

a

+
+
L
yx
dyyxdxyx
22
)()(

L ? 1??

222
ayx =+ ?
I
H?Z_ ??

a

Γ
+? ydzdydx
?1μ_>|L ABCA
? ú
¥ CBA,,GQ1? 











a

+
+
ABCDA
yx
dydx

? ABCDA
^[ )0,1(A  )1,0(B

 )0,1(?C
)1,0(?D 1??¥?Z??_H?L
~ ?yvD ?Dy
~z 
!zàD× ?¥Z_Bá
pé
1 m¥é?Vê
? ),,(
111
zyx °LM? ),,(
222
zyx
H× ?
T
¥?

?z üUS¥ wLs

+
L
dyyxQdxyxP ),(),(?
é¥s
 L ? 1
a  xoy
=°LV? 

?? 

 
a 
tL
2
xy = V? 

?? 

 
a 
??? xyx 2
22
=+ V? 

?? 



~ ?yvD ?Dy
5s?
BaaUS a a 
? 
a dzRQdyPdx

Γ
++ 
 dsRQP )coscoscos( γβα

Γ
++= 
=aa ;
2
3
a
π
a π? 2  
a
2
1
 a
?a {} )(,,0,0
12
zzmgWmgF?== 
~ ?yvD ?Dy
1aa

+
L
dyyxQdxyxP ),(),(


+
=
L
ds
yxQyxP
2
),(),(

a

+
L
dyyxQdxyxP ),(),(


+
+
=
L
ds
x
yxxQyxP
2
41
),(2),(

a

+
L
dyyxQdxyxP ),(),(


+?=
L
dsyxQxyxPxx )],()1(),(2[
2