~ ?yvD ?Dy
??c
wLs
D w
s
~ ?yvD ?Dy
?B?
é¥ wLs
~ ?yvD ?Dy
Baù5¥4
L è wL?q¥é

o x
y
A
B
1?n
M
i
M
1?i
M
2
M
1
M
),(
ii
ηξ
L
.sM?= ρ

é-é

sé
,,,,
121 in
sMMM?→
L
,),(
iii
s?∈ηξ |,),(
iiii
sM≈? ηξρ
p
.),(
1

=

n
i
iii
sM ηξρ
|K
.),(lim
1
0

=

=
n
i
iii
sM ηξρ
λ

′
ú ?′
~ ?yvD ?Dy
=×s¥?l
?l
|Dyxf
|xoyD
¥μ?f
^?l
¥μ?> u×
^
!
),(
1asé
:l> u× ?is?| nD
n
σσσ,,,
21
L
2aTe,),(
iii
σηξ?∈?
nif
iii
,,2,1,),(L=?σηξ
3a p

=
n
i
iii
f
1
),( σηξ
4a |K

=

n
i
iii
f
1
0
),(lim σηξ
λ
?T

Ki5??K′1f
,),(
¥=×sDyxf
∫∫
D
dyxf σ),(::1
~ ?yvD ?Dy
=aé¥ wLs¥à
Q
?l |xoyL
¥BH;á wL
^
!
1asé
:l
?is?| nL
n
sss,,,
21
L
2aTe,),(
iii
s?∈? ηξ
nisf
iii
,,2,1,),(L=?ηξ
3a p

=
n
i
iii
sf
1
),( ηξ
4a |K

=

n
i
iii
sf
1
0
),(lim ηξ
λ
?T

Ki5??K′1f
,
é¥ wLsL

L
dsyxf ),(::1
|Lyxf
¥μ?f
^?l),(
),( yxf
o x
y
A
B
1?n
M
i
M
1?i
M
2
M
1
M
),(
ii
ηξ
L
~ ?yvD ?Dy
2.iHq
.),(
,),(
ié¥ wLs
 ??
H;á wL?

L
dsyxf
Lyxf
3.w<
wLs1
é¥ bW wLf
Γ),,( zyxf
.),,(lim),,(
1
0
i
n
i
iii
sfdszyxf=


=

Γ
ζηξ
λ
~ ?yvD ?Dy
?i
)(,)(.1
21
LLLL +=Γ
^s
;ᥠ?
.),(),(),(
2121
∫∫∫
+=
+ LLLL
dsyxfdsyxfdsyxf
.),(
),(.2

L
dsyxf
Lyxf
wLs:1
é¥> wLf
~ ?yvD ?Dy
4.?é
.),(),()],(),([)1(
∫∫∫
±=±
LLL
dsyxgdsyxfdsyxgyxf
).(),(),()2( 1è
kdsyxfkdsyxkf
LL
∫∫
=
.),(),(),()3(
21
∫∫∫
+=
LLL
dsyxfdsyxfdsyxf
).(
21
LLL +=
~ ?yvD ?Dy
p/
 wLs¥′
,4:,.1
22
=+ yxxoyL
¥ wL
=

L
ds45
¥°L
?¤? )1,0(),0,1(,.3 L

=+
L
dsyx )(5
,4:,.2
22
=+ yxxoyL
¥ wL
=+

L
dsyx )(
22
5
π16
π16
2
~ ?yvD ?Dy
?aé wLs¥9
? ?
)(
)()()](),([),(
,],[)(),(
)(
),(
),(
,),(
22
βα
ψ?ψ?
βαψ?
βα
ψ
β
α
<

+

=
≤≤
=
=
∫∫
dtttttfdsyxf
tt
t
ty
tx
L
Lyxf
L
5
 μB¨ ???

?¥?
Z?1
μ?l O ?? wL
!
~ ?yvD ?Dy
LBALt
í?
¥??
H9v???,βα
BMMMMAL
n
==L
210
,,
¥?
òs?¥?
′GQ1
s1ü,nL
βα =<<<=
n
ttttL
210
o x
y
A
B
1?n
M
i
M
1?i
M
2
M
1
M
),(
ii
ηξ
L
??l


=

=
n
i
iii
L
sfdsyxf
1
0
),(lim),(?ηξ
λ
?é¥9

T


+

=
i
i
t
t
i
dttts
1
)()(
22
ψ
??s?′? ?
iiii
ts?τψτ )()(
22

+

=
11
,

=≤≤
iiiiii
ttttt?τ
,,),(
 V#
 ??? LLyxf
£
~ ?yvD ?Dy
,),(
iii
t τηξ =??^
!
,,),( ¥?
Z?
@
 LL
ii
ηξ
=
=

)(
)(
ii
ii
τψη
τ?ξ
iiii
ts?τψτ )()(
22

+

=ü
=
=
)(
)(
ii
ii
τψη
τ?ξ
#


=

=
n
i
iii
L
sfdsyxf
1
0
),(lim),(?ηξ
λ
} ?
iii
n
i
ii
L
tf
dsyxf
τψτ?τψτ?
λ
)()()](),([lim
),(
22
1
0

+

=


=

dtttttf )()(])(),([
22
ψ?ψ?
β
α

+

=

~ ?yvD ?Dy
dtttttfdsyxf
L
∫∫

+

=∴
β
α
ψ?ψ? )()()](),([),(
22
Vn,19
,),(

L
dsyxf
5 L¥?
Z?,
=
=
)(
)(
ty
tx
ψ
s?M
 t¥M uW,
βα ≤≤ t
¥Vr
T p ds dtttds )()(
22
ψ?

+

=
., p?s} ?

T
~ ?yvD ?Dy
?i;.1 βαB?1l?
K?s¥/K
.,,),(.2 7
^Moμ1¥?4N? ?? yxyxf
+
y f?
.)(:)1( bxaxyL ≤≤=ψ
.)(1)](,[),(
2
dxxxxfdsyxf
b
aL
∫∫

+= ψψ
)( ba <
~ ?yvD ?Dy
w<,)().(),(),(,βαωψ?Γ ≤≤=== ttztytx
)(
)()()()](),(),([
),,(
222
βα
ωψ?ωψ?
β
α
Γ
<

+

+

=


dtttttttf
dszyxf
.)(:)2( dycyxL ≤≤=?
.)(1]),([),(
2
dyyyyfdsyxf
d
cL
∫∫

+=
)( dc <
~ ?yvD ?Dy
π20),cos1(),sin(:,
2
≤≤?=?=

ttayttaxLdsy
L
3
dtyxds
tt
22
)()(

+

= dtta )cos1(2
2
=
dt
t
a |
2
sin|2=

L
dsy
2
dt
t
ata |
2
sin|2)cos1(
2
0
22

=
π
2
cos)
2
cos1(16
2
0
223
t
d
t
a

=
π
2
cos)
2
cos
2
cos21(16
2
0
423
t
d
tt
a

+=
π
π2
0
533
|)
2
cos
5
1
2
cos
3
2
2
(cos16
ttt
a +=
.
15
256
3
a=
è 1
~ ?yvD ?Dy
¥B
??
? )1,1()0,0(:,
2
xyLdsy
L
=

3 dxyds
2
1

+=
,41
2
dxx+= 10 ≤≤ x
=

L
dsy
dxxx

+
1
0
2
41
)4(41
8
1
2
1
0
2
xdx

+=
)41(41
8
1
2
1
0
2
xdx ++=

1
0
2
3
2
|)41(
3
2
8
1
x+?=
.
12
155?
=
è 2
~ ?yvD ?Dy
.,:,
2
??¥ u×¥H?xyxyLxds
L
==

3
x
y
o
xyl =:
1
2
2
,xyl =
21
llL +=
,10,2:
1
≤≤= xdxdsl
,10,41:
2
2
≤≤+= xdxxdsl
=

L
xds
∫∫
+
21
ll
xdsxds
dxxxdxx
∫∫
++=
1
0
2
1
0
412
+=
1
0
2
|
2
2
x
1
0
2
3
2
|)41(
12
1
x+
+=
2
2
)41(41
8
1
2
1
0
2
xdx ++

.
12
12655?+
=
è 3
~ ?yvD ?Dy
.
,,:,
222
22
¥??H?B`K
=
??¥
?
à?xxyayxLdse
L
yx
==+

+
3
x
y
o
xyl =:
1
a
321
lllL ++=
,
2
2
0,:
1
axxyl ≤≤=
,
4
0,sin,cos:
3
π
≤≤== ttaytaxl
,0,0:
2
axyl ≤≤=
adtds =
dxds 2=
dxdxyds =

+=
2
1
=

+
dse
L
yx
22
dse
l
yx

+
1
22
dse
l
yx

+
+
2
22
dse
l
yx

+
+
3
22
è
~ ?yvD ?Dy
,
2
2
0,:
1
axxyl ≤≤=
,
4
0,sin,cos:
3
π
≤≤== ttaytaxl
,0,0:
2
axyl ≤≤=
adtds =
dxds 2=
dxdxyds =

+=
2
1
=

+
dse
L
yx
22
dse
l
yx

+
1
22
dse
l
yx

+
+
2
22
dse
l
yx

+
+
3
22
dxe
a
x
2
2
2
0
2

=
dxe
a
x

+
0
adte
a

+
4
0
π
4
1|
2
2
0
2
π
aa
a
x
aeee +?+=
.
4
)1(2
aa
e
a
e
π
+?=
x
y
o
xyl =:
1
a
~ ?yvD ?Dy
è 5
).(
,sin
,cos
:,`K??? p Ι
=
=
=

tby
tax
LxydsI
L
3
dttbtatbtaI
22
2
0
)cos()sin(sincos +=

π
dttbtattab
2222
2
0
cossincossin +=

π

=
a
b
duu
ba
ab
2
22
)cossin(
2222
tbtau +=
7
.
)(3
)(
22
ba
babaab
+
++
=
~ ?yvD ?Dy
è 6
.)2,1()2,1(,4:
,
2
B
?V ?
p
=
=

xyL
ydsI
L
3
dy
y
yI
2
2
2
)
2
(1+=

.0=
è 7
)20(.
,sin,cos:,
π≤θ≤θ=
θ=θ=Γ=

Γ
¥B
? p
kz
ayaxxyzdsI
3
.
2
1
222
kaka +π?=
xy 4
2
=
θθθθ dkaka
222
sincos +?

π
=
2
0
I
~ ?yvD ?Dy
è 8
=++
=++
Γ
=

Γ
.0
,
,
2222
2
zyx
azyx
dsxI
1?? ?
p
3 ???,?
.
222
∫∫∫
ΓΓΓ
== dszdsydsx

Γ
++= dszyxI )(
3
1
222
#

Γ
= ds
a
3
2
.
3
2
3

=
),2( o
v??é

Γ
=π dsa
~ ?yvD ?Dy
è
),0,0,0(| "
ABCDAdsyzx |L9
,,
2
Γ
Γ

)2,3,1(),2,0,1(),2,0,0( DCB
3
,0,0,== yxAB
20 ≤≤ z
dzdzyxds =

+

+=
22
1
,2,0,== zyBC
10 ≤≤ x
dxdxzyds =

+

+=
22
1
,2,1,== zxCD
,30 ≤≤ y
dydyzxds =

+

+=
22
1
xzxyDA 2,3,==
10 ≤≤ x
dxdxzyds 141
22
=

+

+=
~ ?yvD ?Dy
,0,0,== yxAB 20 ≤≤ z
dzdzyxds =

+

+=
22
1
,2,0,== zyBC 10 ≤≤ x
dxdxzyds =

+

+=
22
1
,2,1,== zxCD
,30 ≤≤ y dydyzxds =

+

+=
22
1
xzxyDA 2,3,== 10 ≤≤ x
dxdxzyds 141
22
=

+

+=
=

Γ
dsyzx
2
∫∫∫∫
+++
DACDBCAB
yzdsxyzdsxyzdsxyzdsx
2222
0= 0+

+
3
0
2ydy
dxx 146
1
0
4

+
.
5
146
9+=
~ ?yvD ?Dy
1a+Dt ?il
,),()1( ¥L
á
HV
U? Lyxρ;),(

=
L
dsyxM ρ;,1),()2(

=≡
L
dsLyxf

H?
,),(
),()3(
)¥ú
H?
?
¥V
U ???
yx
Lyxf
.),(

=
L
dsyxfS
?

s
L
),( yxfz =
~ ?yvD ?Dy
,)4( �8
à# wL yx
.,
22
∫∫
==
L
y
L
x
dsxIdsyI ρρ
wL¥×?US)5(
.,




==
L
L
L
L
ds
dsy
y
ds
dsx
x
ρ
ρ
ρ
ρ
~ ?yvD ?Dy
LR| ¥????19
??1 α2
)1( =ρ8
?
¥?à¥?
3
x
y
o
α
R
è
?my ?US"
,sin,cos,tRytRxL ==
αα ≤≤? t
Rdtdtyxds =

+

=
22

=
L
dsyI ρ
2

=
α
α
tRdtR
22
sin

=
α
0
23
sin2 tdtR

=
α
0
3
)2cos1( dttR
α
0
3
|)2sin
2
1
( ttR?=
).2sin
2
1
(
3
αα?= R
~ ?yvD ?Dy
l2
é wLs¥à
Q
é wLs¥9
é wLs¥?¨
~ ?yvD ?Dy
± I5
é¥ wLs¥?l? ¥?|
V
1μ
$
i
S?
~ ?yvD ?Dy
± I53s
i
S? ¥?|¥ù1?
V
U
¥é,
~ ?yvD ?Dy
~ ?yvD ?Dy
BaA b5
aX? wL?q L¥L
á1 ),( yxρ
5 L¥é

M@@@@@@@@@@@@@@@
a

L
ds@@@@@@@@@@@@@@@
a@@@@@@@@¥ wLsD wL¥Z_í1
a

L
dsyxf ),( 


+

β
α
φ?φ? dtttttf )()()](),([
22
?1
p α@@@@@@@@β
=a9
/
 pé¥ wLs
a

+
L
yx
dse
22

? L1??
222
ayx =+
°L xy =
# xà?B`K
=
??¥
?¥??H?
5
~ ?yvD ?Dy
a

Γ
yzdsx
2

? L1|L ABCD
? ú DCBA,,,
GQ1? 















a

+
L
dsyx )(
22

? L1 wL

=
+=
)cos(sin
)sin(cos
tttay
tttax
 )20( π≤≤ t 
a9

L
dsy
? L1
gL
 )0()()(
222222
>?=+ ayxayx 
?a
!
è??TB ?¥Z?1 tax cos=
tay sin=
ktz =
? π≤≤ 20 t
¥L
á
222
),,( zyxzyx ++=ρ
p
a
1? Z�
Z
I8


a
¥×?
~ ?yvD ?Dy
5s?
Baa

L
dsyx ),(ρ  a ¥éL 
aé a
=aa 2)
4
2(?
π
+ ae
a
 a
a )21(2
232
π+π a  a )22(2
2
a 
?a )43(
3
2
222222
kakaaI
z
π++π= 

222
2
43
6
ka
ak
x
π+
=  
222
2
43
6
ka
ak
y
π+
π?
= 

222
222
43
)2(3
ka
kak
z
π+
π+π
= 
~ ?yvD ?Dy
è 5 p??
222222
RzxRyx =+=+ $??
é/?s¥
,
L
x
y
z
222
,RyxLxoy =+
ü
¥
???,
p
1?B?
K¥?,
1?
¥?H,?
¥ú1
22
xRz?=

=∴
L
dsxRA
22
8
1
?
¥

2
0
sin
cos
π
≤≤
=
=
t
tRy
tRx
L
Rdtds =

=
2
0
22
)cos(
8
1
π
RdttRRA
~ ?yvD ?Dy

=
2
0
22
)cos(
8
1
π
RdttRRA
2
0
2
2
0
2
)cos(sin
π
π
tRtdtR?==

.
2
R=
2
8RA=