1
第二章时域离散信号和系
§
1 时域离散信号---序列一、时域表示法一个数字序列x,它的第n个数字以x(n)表示,
则记:
{
}
+
∞
<
<
∞
=
n
n
x
x
,
)
(
12
0
-1
-2
x(n)
n
一般用
x(n)
表示,或称序列
x(n)
2
注意:当
n
不是整数,
x(n)
无定义常用序列:
1
、单位取样序列
)
(
n
δ
n
1
)
(
n
δ
0
≠
=
=
0
,
0
0
,
1
)
(
n
n
n
δ
2
、单位阶跃序列
u(n)
...
0
n
u(n)
<
≥
=
0
,
0
0
,
1
)
(
n
n
n
u
3
∑
∞
=
=
=
0
)
(
)
(
),
1
(
)
(
)
(
:
k
k
n
n
u
n
u
n
u
n
δ
δ
而显然注意移位关系
:
u(n-1)
将
u(n)
右移
1
点
u(n+1)
将
u(n)
左移
1
点
u(-n-1)
将
u(-n)
左移
1
点
u(-n+1)
将
u(-n)
右移
1
点
3.
实指数序列
1
a
0
<
<
n
a
...
1
0n
-1
4
)
(
0
n
n
x
→
…
)
(
n
x
0
0
>
n
1
z
1
z
1
z
[]
n
j
n
e
e
n
A
n
n
j
0
0
)
(
0
0
sin
cos
:
.
5
,
),
cos(
:
.
4
0
ω
ω
φ
ω
φ
ω
σ
ω
σ
+
=
+
+
复指数序列实数正弦序列
{}
{}
{}
)
(
:
)
(
)
(
,
)
(
.
)
(
)
(
)
(
,
)
(
)
(
)
(
).
(
)
(
,
)
(
).
(
.
.
0
n
n
x
n
x
n
x
n
x
x
n
y
n
x
n
x
n
y
n
x
y
x
n
y
n
x
n
x
n
y
n
x
y
x
→
→
=
±
→
⊕
→
±
=
±
→
→
=
延迟或移位序列的运算二
α
α
α
α
>
)
(
n
y
↑
)
(
n
y
↑
±
5
三
,
序列的周期性对所有
n:x(n)=x(n+N),N
为最小的正整数
.
则称
x(n)
为周期序列
,
周期为
N
eg,
复指数序列
<1>
当
σ
n
j
e
n
x
)
(
0
)
(
ω
σ
+
=
0
≠
非周期非周期
)
(
.
n
x
e
n
∴
σ
Q
)
/
2
(
)
2
(
0
0
0
0
)
(
,
0
2
ω
π
ω
π
ω
ω
σ
+
+
=
=
=
=
n
j
n
j
n
j
e
e
e
n
x
当
6
=
非周期为无理数若其周期为互素若其周期为为整数若
,
2
2
P
)
Q
(P,
,
2
2
,
2
0
0
0
0
0
ω
π
ω
π
ω
π
ω
π
ω
π
P
Q
2
)
(
∑
+∞
∞
=
=
n
n
x
ε
四、序列的能量五、序列的单位取样表示任何序列可表示成各延迟单位取样的幅度的加权和
7
Eg,x(n)
∑
=
=
+
+
+
=
3
0
)
(
)
(
)
3
(
)
3
(
)
2
(
)
2
(
)
1
(
)
1
(
)
(
)
0
(
)
(
k
k
n
k
x
n
x
n
x
n
x
n
x
n
x
δ
δ
δ
δ
δ
12
0
x(0)
n
3
x(1)
x(2)
x(3)
∑
∞
∞
=
=
k
k
n
k
x
n
x
)
(
)
(
)
(
δ
一般:
六、序列的频域表示
---
傅立叶变换
8
∫
∫
∞
∞
∞
∞
=
=
d
e
j
X
t
x
dt
e
t
x
j
X
t
j
a
a
t
j
a
a
)
(
2
1
)
(
)
(
)
(
π
模拟信号对离散信号
x(n)
,积分
->
求和
∫
∑
∞
∞
=
=
=
π
π
ω
ω
ω
ω
ω
π
d
e
e
X
n
x
e
n
x
e
X
n
j
j
n
n
j
j
)
(
2
1
)
(
)
(
)
(
T
e
X
j
=
ω
ω
π
ω
,
,
,
2
)
(
数字频率模拟频率的周期为注
9
§
2
线性非移变系统系统:将输入
x
(
n)
映射成输出序列
y
(
n
)的唯一性变换或运算
x(n)——>T[x(n)]——>y(n) y(n)=T[x(n)]
一、线性系统满足叠加原理:
[
]
[
]
)
(
)
(
,
)
(
)
(
2
2
1
1
n
x
T
n
y
n
x
T
n
y
=
=
[]
[
]
[
]
)
(
)
(
)
(
)
(
)
(
)
(
2
1
2
1
2
1
n
by
n
ay
n
x
bT
n
x
aT
n
bx
n
ax
T
b
a
+
=
+
=
+
、
若则
T
为线性系统,
eg,y(n)=2x(n)
[]
[
]
)
(
2
)
(
.
)
(
)
(
,
)
(
)
(
n
x
n
y
eg
T
k
n
x
T
k
n
y
n
x
T
n
y
=
=
=
为非移变系统则若设二、非移变系统非移变
)
(
2
)
(
k
n
x
k
n
y
=
10
[]
[]
[
]
[
]
∑
∑
∑
∞
∞
=
∞
∞
=
∞
∞
=
=
=
=
=
→
→
k
k
k
k
n
T
k
x
k
n
k
x
T
k
n
k
x
T
n
x
T
n
y
n
y
T
n
x
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
δ
δ
δ
变系统的响应三、信号通过线性非移
[]
∑∑
∞
∞
=
∞
∞
=
=
=
=
=
=
kk
k
n
x
k
h
n
x
n
h
n
h
n
x
k
n
h
k
x
n
y
n
T
n
h
)
(
)
(
)
(
*
)
(
)
(
*
)
(
)
(
)
(
)
(
则系统的单位取样响应
—
)
(
)
(
令
δ
单位取样响应
—
单位取样序列
—
注
)
(
)
(
n
h
n
δ
)
(
*
)
(
)
(
*
)
(
)
(
:
n
x
n
h
n
h
n
x
n
y
=
=
的卷积为输入与单位取样响应线性非移变系统的输出即
)
(
),
(
n
h
n
x
卷积:
1
24
n
0
3
1
11
∑
∞
∞
=
=
k
k
n
h
k
x
n
y
)
(
)
(
)
(
0
k
x(k)
123
-3
k
h(-k)
-2
-1
0
-4
4
1
1
12
每一步向右移一位
0
1
8
2
7
3
6
4
5
5
4
4
3
3
2
2
2
1
*
1
1
*
1
)
1
(
,
1
1
1
*
1
)
0
(
,
0
,其余为
)
(
,
)
(
)
(
,
)
(
,
)
(
,
)
(
,
)
(
,
同理
=
=
=
=
=
=
=
=
=
+
=
=
=
=
=
y
y
y
y
y
y
y
n
y
n
y
n
12
0
n
3
4
56
7
8
1
2
3
4
5
y(n)
13
卷积计算方法:
=
=
=
≥
=
∑
∞
∞
=
再相加对应的幅值相乘与将再相加对应的的幅值相乘与将再相加对应的幅值相乘与将有值的两个序列对
,
)
2
(
)
(
:
2
.
,
)
1
(
)
(
:
1
.
,
)
(
)
(
:
0
)
0
)(
(
)
(
)
(
k
h
k
x
n
k
h
k
x
n
k
h
k
x
n
n
k
n
h
k
x
n
y
k
14
:
,
:
.
1
.
稳定的充要条件是对线性非移变系统的输出对有界的输入产生有界稳定系统系统的稳定性和因果性四
∞
<
=
∑
∞
∞
=
k
k
h
s
)
(
∞
<
∞
<
<
∑
∞
∞
=
)
(
)
(
,
)
(
1
n
y
k
h
M
n
x
k
则由设充分性证明:
∞
<
≤
≤
=
=
∑
∑
∑
∑
∞
∞
∞
∞
=
∞
∞
=
∞
∞
=
)
(
)
(
)
(
)
(
)
(
)
(
)
(
k
h
M
k
h
M
k
n
x
k
h
k
n
h
k
x
n
y
k
k
k
Q
15
∞
=
∑
∞
∞
=
k
k
h
)
(
:
设用反证法
=
)
(
n
x
取
)
(
/
)
(
*
n
h
n
h
0
0
)
(
≠
n
h
0
)
(
=
n
h
有界即则
)
(
,
1
)
(
n
x
n
x
=
∞
<
∑
∞
∞
=
k
k
h
)
(
:
由系统稳定必要性
∞
=
=
=
=
=
=
=
∑
∑
∑∑
∞
∞
=
∞
∞
=
∞
∞
=
∞
∞
=
s
k
h
k
h
k
h
k
h
k
h
k
h
k
x
k
h
y
n
k
k
kk
)
(
)
(
)
(
)
(
)
(
*
)
(
)
(
)
(
)
0
(
0
,
2
时的输出此时
16
即此时输出无界,系统不稳定,与条件矛盾
2
、因果系统
:
物理可实现系统 输出的变化不会发生在输入之前
,
即某时刻的输出只与该时刻及该时刻以前的输入有关
,
而与该时刻以后的输入无关
.
对于线性非移变系统
,
因果性的充要条件是当
n<0
时
,h(n)=0
同样若对一个离散序列
x(n)
若
n<0,x(n)=0,
称
x(n)
为因果序列
17
∑
∑
∞
=
∞
∞
=
=
=
∴
=
<
=
0
)
(
0
)
(
,
0
)
(
)
(
:
1
k
k
k
n
a
k
h
s
n
u
n
n
u
a
n
h
又是因果系统性试判断其稳定性及因果
、某线性非移变系统例
Q
时才稳定该系统只有在时而时当
1
,
1
1
1
,
1
<
∴
∞
=
≥
∞
<
=
<
∴
a
s
a
a
s
a
18
)
6
7
2
sin(
)
(
)
(
4
3
2
1
.
2
π
π
+
=
n
n
x
n
y
稳定性因果性非移变性线性判断下述系统的例 []
[]
是线性系统
∴
+
=
+
+
+
=
+
+
=
+
+
=
+
=
)
(
)
(
)
6
7
2
sin(
)
(
)
6
7
2
sin(
)
(
6
7
2
sin
)
(
)
(
)
(
)
(
)
6
7
2
sin(
)
(
)
(
)
6
7
2
sin(
)
(
)
(
1
2
1
2
1
2
1
2
1
2
2
1
1
n
y
n
y
n
n
x
n
n
x
n
n
x
n
x
n
x
n
x
T
n
n
x
n
y
n
n
x
n
y
π
π
π
π
π
π
π
π
π
π
19
[]
[]
不是非移变系统而
∴
≠
+
=
+
=
)
(
)
6
)
(
7
2
sin(
)
(
)
(
)
6
7
2
sin(
)
(
)
(
2
k
n
x
T
k
n
k
n
x
k
n
y
n
k
n
x
k
n
x
T
π
π
π
π
Q
是因果系统时刻以后的输入无关与时刻的输入有关时刻的输出只与
∴
n
n
n
3
)
(
)
6
7
2
sin(
.
)
(
)
(
4
n
x
n
n
x
n
y
≤
+
≤
π
π
稳定性
20
稳定则若
∴
∞
<
∞
<
∴
)
(
,
)
(
n
y
n
x
21
§
3
时域离散序列的傅立叶变换
∞
<
=
∑
∑
∞
∞
=
∞
∞
=
n
n
n
j
j
n
x
e
n
x
e
X
n
x
)
(
:
)
(
)
(
),
(
收敛条件对一、定义
ω
ω
:
,
)
(
),
(
)
(
2
1
)
(
:
即频率响应为系统的定义其傅立叶变换对单位取样响应反变换
ω
π
π
ω
ω
ω
π
j
n
j
j
e
H
n
h
d
e
e
X
n
x
∫
=
∫
∑
∞
∞
=
=
=
π
π
ω
ω
ω
ω
ω
π
π
d
e
e
H
n
h
e
n
h
e
H
n
j
j
n
n
j
j
)
(
2
1
)
(
:
)
2
(
)
(
)
(
而的连续函数周期为
22
)
(
else
0,
1
-
N
n
0
,
1
)
(
.
1
ω
j
e
H
n
h
求已知例
≤
≤
=
...
0123
N
-
1
n
h(n)
1
)
(
)
(
1
1
)
(
)
(
2
2
2
2
2
2
1
0
1
0
ω
ω
ω
ω
ω
ω
ω
ω
ω
ω
ω
j
j
j
N
j
N
j
N
j
N
n
N
n
j
N
j
n
j
n
j
j
e
e
e
e
e
e
e
e
e
e
n
h
e
H
=
=
=
=
=
=
∑∑
[]
)
(
arg
2
).
1
(
.
)
(
.
)
2
sin(
)
2
sin(
ω
ω
ω
ω
ω
j
e
H
j
j
N
j
e
e
H
e
N
=
23
[]
ω
ω
ω
ω
ω
2
1
)
(
arg
2
sin
)
2
sin(
)
(
:
=
=
N
e
H
N
e
H
j
j
相位幅度
)
(
ω
j
e
H
π
N
π
2
N
π
2
π
π
2
0
N
π
2
24
0
1
)
(
.
2
c
≤
≤
≤
=
π
ω
ω
ω
ω
ω
c
j
e
H
理想低通滤波器例
0
c
ω
c
ω
)
(
ω
j
e
H
1
π
π
c
ω
π
+
2
π
2
c
ω
π
2
π
2
ω
求
h(n)
并分析其稳定性和因果性
25
[
]
[]
)
sin(
1
2
1
1
.
2
1
2
1
)
(
n
n
e
e
n
j
e
jn
d
e
n
h
c
n
j
n
j
n
j
n
j
c
c
c
c
c
c
ω
π
π
π
ω
π
ω
ω
ω
ω
ω
ω
ω
ω
=
=
=
=
∫
21
:
)
(
,
2
/
如图时当
n
h
c
π
ω
=
π
1
π
1
3
3
12
0
2
1
π
3
1
π
3
1
26
念很重要但理想低通滤波器的概不稳定不收敛又非因果显然
∴
→
≤
=
∴
≠
<
∑
∑
∑
∞
∞
=
∞
∞
=
∞
∞
=
k
k
c
k
k
k
k
k
h
n
h
n
1
1
sin
)
(
,
0
)
(
,
0
,
π
π
ω
∑
∞
∞
=
=
=
k
k
n
h
k
x
n
h
n
x
n
y
)
(
)
(
)
(
*
)
(
)
(
.
线性非移变傅立叶变换关系系统输出与输入序列的二
∑∑
∑
∞
∞
=
∞
∞
=
∞
∞
=
=
=
n
n
j
k
n
n
j
j
e
k
n
h
k
x
e
n
y
e
Y
ω
ω
ω
.
)
(
)
(
)
(
)
(
则
∑∑
∞
∞
=
∞
∞
=
=
kn
n
j
e
k
n
h
k
x
ω
)
(
)
(
27
)
(
)
(
)
(
.
)
(
)
(
.
)
(
)
(
ω
ω
ω
ω
ω
j
j
jw
k
k
j
n
k
n
j
k
k
j
e
H
e
X
e
H
e
k
x
e
k
n
h
e
k
x
=
=
=
∑
∑
∑
∞
∞
=
∞
∞
=
∞
∞
=
几个定义对称性质三、傅立叶变换的一些
.
1
可表示成任意一个序列共轭反对序列共轭对称序列
)
(
)
3
(
)
(
*
)
(
:
)
2
(
)
(
*
)
(
:
)
1
(
n
x
n
x
n
x
n
x
n
x
o
o
e
e
=
=
28
[]
[]
)
(
*
)
(
21
)
(
)
(
*
)
(
21
)
(
,
)
(
)
(
)
(
n
x
n
x
n
x
n
x
n
x
n
x
n
x
n
x
n
x
o
e
o
e
=
+
=
+
=
其中对实序列
)
4
(
)
(
)
(
:
)
(
)
(
:
n
x
n
x
n
x
n
x
o
o
e
e
=
=
奇序列偶序列
)
(
)
(
)
()
5
(
ω
ω
ω
j
o
j
e
j
e
X
e
X
e
X
+
=
和共轭反对称傅立叶变换的共轭对称
[
]
[]
)
(
*
)
(
21
)
(
)
(
*
)
(
21
)
(
,
ω
ω
ω
ω
ω
ω
j
j
j
o
j
j
j
e
e
X
e
X
e
X
e
X
e
X
e
X
=
+
=
其中
29
)
(
*
)
(
:
)
(
)
(
*
)
(
:
)
(
0
ω
ω
ω
ω
ω
ω
j
o
j
o
j
j
e
j
e
j
e
e
X
e
X
e
X
e
X
e
X
e
X
=
=
是共轭反对称是共轭对称
)
(
*
)
(
*
),
(
*
)
(
*
,
)
(
)
)(
(
1
:
.
2
ω
ω
ω
j
j
j
e
X
n
x
e
X
n
x
e
X
n
x
→
→
→
则复序列几个性质
)
(
)
(
)
(
)
(
*
)
(
*
)
(
)
(
*
:
*
*
*
*
ω
ω
ω
ω
ω
ω
ω
j
n
n
j
nn
n
j
n
j
j
n
n
j
n
n
j
e
X
e
n
x
e
n
x
e
n
x
e
X
e
n
x
e
n
x
=
=
=
=
=
∑
∑∑
∑
∑
∞
∞
=
∞
∞
=
∞
∞
=
∞
∞
=
∞
∞
=
证明
[]
[
]
[]
[]
)
(
)
(;
)
(
Re
)
(
)
(
)
(
);
(
)
(
Re
2
ω
ω
ω
ω
j
m
o
j
e
j
o
m
j
e
e
X
jI
n
x
e
X
n
x
e
X
n
x
jI
e
X
n
x
→
→
→
→
30
[]
[]
[]
[]
)
(
)
(
*
)
(
21
)
(
*
)
(
21
)]
(
Im[
)
(
)
(
*
)
(
21
)
(
*
)
(
21
)]
(
Re[
:
ω
ω
ω
ω
ω
ω
j
o
j
jw
j
e
j
j
e
X
e
X
e
X
n
x
n
x
n
x
j
e
X
e
X
e
X
n
x
n
x
n
x
=
→
=
=
+
→
+
=
证明
[]
[
]
[
]
[]
[]
[
]
)
(
)
(
*
)
(
21
)
(
*
)
(
21
)
(
)
(
Re
)
(
*
)
(
21
)
(
*
)
(
21
)
(
0
ω
ω
ω
ω
ω
ω
j
m
j
j
j
j
j
e
e
X
jI
e
X
e
X
n
x
n
x
n
x
e
X
e
X
e
X
n
x
n
x
n
x
=
→
=
=
+
→
+
=
,
)
(
*
)
(
1
)
(
)
(
*
)
(
3
因此是共轭对称根据性质实序列
ω
ω
j
j
e
X
e
X
n
x
n
x
n
x
=
∴
=
Q
[
]
[
]
[]
[
]
奇函数偶函数
→
=
→
=
)
(
)
(
)
(
Re
)
(
Re
ω
ω
ω
ω
j
m
j
m
j
j
e
X
I
e
X
I
e
X
e
X
31
[
]
)
(
arg
)
(
)
(
:
ω
ω
ω
j
e
X
j
j
j
e
e
X
e
X
=
若记同理
[]
[
]
)
(
)
(
arg
)
(
arg
)
(
)
(
)
(
,
相位奇函数幅度偶函数则
→
=
→
=
ω
ω
ω
ω
j
j
j
j
e
X
e
X
e
X
e
X
数而虚部和相位均为奇函的实部和模是偶函数其傅立叶变换而且称的的傅立叶变换是共轭对一个实数序列即
)
(
,
.
)
(
,
ω
j
e
X
n
x
32
§
4
时域连续信号的采样一、采样定理
→
)
(
t
x
)
(
t
x
s
→
∑
∞
∞
=
=
n
T
nT
t
t
)
(
)
(
δ
δ
)
(
)
(
)
(
)
(
)
(
)
(
)
(
nT
t
nT
x
nT
t
t
x
t
t
x
t
x
n
n
T
s
=
=
=
∑
∑
∞
∞
=
∞
∞
=
δ
δ
δ
)
(
*
)
(
2
1
)
(
).
(
:
2
1
2
1
X
X
t
x
t
x
π
根据傅立叶变换的性质
)
(
*
)
(
2
1
)
(
=
∴
T
s
X
x
δ
π
33
))
0
(
)
(
)
(
:
(
1
).
(
1
)
(
,
)
(
,
2
/
2
/
.
1
2
x
dt
t
t
x
T
dt
e
t
T
A
e
A
t
t T
T
t
jn
n
n
t
T
n
j
n
T
T
s
=
=
=
=
∫
∫
∑
∞
∞
∞
∞
=
δ
δ
δ
δ
π
注展成傅立叶级数是周期函数而
Q
∑
∑
∞
∞
=
∞
∞
=
=
=
∴
n
t
jn
n
t
nf
j
T
s
s
e
T
e
T
t
1
1
)
(
2
π
δ
[
]
∑
∞
∞
=
=
∴
=
n
s
T
s
t
jn
n
T
n
e
F
s
)
(
2
)
(
)
(
2
δ
π
δ
πδ
Q
∑
∑
∞
∞
=
∞
∞
=
=
=
=
∴
n
s
n
s
T
s
n
x
T
n
x
T
x
x
)
(
1
)
(
*
)
(
2
2
1
)
(
*
)
(
2
1
)
(
δ
π
π
δ
π
34
结论:采样后信号的频谱是原连续信号的频谱以
T
s
π
2
=
为周期的周期延拓
)
(
)
(
)
2
,
1
,
0
(
:
采样频率原频率等混叠频率
s
A
s
A
nf
f
f
n
n
=
±
±
=
=
c
c
s
s
35
设信号的最高频率为
f
c
,带宽为
2f
c
而采样频率为
f
s
则,当时
c
s
f
f
2
≥
不会产生混叠误差,可以恢复
---
采样定理
36
)
(
)
(
1
)
(
2
2
:
频域采用窗函数时当信号的恢复二、
=
≤
∴
≥
X
T
X
s
s
c
s
Q
s
c
2
s
2
s
c
s
)
(
s
X
=
)
(
R
w
2
/
,
0
2
/
,
1
s
s
>
≤
)
(
).
(
)
(
*
)
(
:
)
(
).
(
.
)
(
=
R
s
r
s
R
s
W
X
t
w
t
x
W
x
T
x
据傅立叶变换性质整提取出来即可将原信号的频谱完
37
)
2
/
(
1
)
2
/
(
2
)
(
)
(
*
)
(
)
(
t
s
T
t
s
t
w
t
w
t
Tx
t
x
s
a
s
a
s
R
R
s
=
=
=
∴
π
而
∑∑
∞
∞
=
∞
∞
=
=
=
nn
s
nT
t
nT
x
nT
t
t
x
t
x
)
(
)
(
)
(
)
(
)
(
δ
δ
∑∑∑
∑
∞
∞
=
∞
∞
=
∞
∞
=
∞
∞
=
=
=
=
=
∴
nn
a
s
n
a
s
a
n
nT
t
T
nT
t
T
nT
x
nT
t
T
s
nT
x
nT
t
s
nT
x
t
s
T
nT
t
nT
x
T
t
x
)
(
)
(
sin
)
(
)
(
).
(
)
(
2
).
(
)
2
(
1
*
)
(
)
(
)
(
π
π
π
δ
即由取样点及内插函数可恢复 原始信号x(t)
38
§
5 Z
变换(复频域分析)
一、
Z
变换的定义
1
、定义
∑
∑
∞
=
∞
∞
=
==
0
)
(
)
(
:
)
(
)
(
:
n
n
n
n
z
n
x
z
X
z
z
n
x
z
X
z
变换单边变换双边
∞
<
<
∞
n
n
x
),
(
)
(
)
(
,
1
1
)
(
)
)(
(
)
(
)
(
,
,
)
(
ω
ω
ω
ω
j
n
n
j
n
n
n
j
n
n
j
e
X
z
X
z
r
e
r
n
x
re
n
x
z
n
x
z
X
re
z
n
x
=
=
=
=
=
=
=
∑
∑
∑
∞
∞
=
∞
∞
=
∞
∞
=
时即当一般则两者意义相同因果序列若
39
∞
<
∞
<
∑
∑
∞
∞
=
∞
∞
=
n
n
n
j
n
x
r
Z
n
x
e
X
z
z
X
)
(
)
(
)
(
)
(
.
2
变换收敛的条件对收敛的条件对值的集合解析的所有使收敛域
ω
变换必须注明其收敛域注的收敛域为变换的绝对可加则而如其傅立叶变换不收敛如
z
z
z
u
z
n
u
n
u
r
r
n
u
n
x
n
:
1
)
(
)
(
.
)
(
,
1
.
),
(
)
(
:
∞
≤
<
∴
>
=
40
.
,
0
,
:
)
(
,
2
1
2
1
性质有关变换的收敛域与序列的其中平面上的环状区域收敛于一个一般情况
z
z
z
z
z
z
z
z
X
∞
≤
≥
<
<
0
)
(
z
jI
m
单位圆
1
=
z
1
z
2
z
)
(
z
R
e
)
(
z
jI
m
)
(
z
R
e
∞
≤
≤
=
=
∞
≤
<
>
>
∞
<
<
>
<
∞
<
≤
<
<
=
∑
=
z
n
n
n
z
n
n
z
n
n
z
n
n
z
n
x
z
X
n
n
n
n
0
,
)
(
0
,
0
0
,
0
,
0
0
,
0
,
0
0
,
0
,
0
:
,
)
(
)
(
:
1
2
1
2
1
2
1
2
1
2
1
收敛域特殊收敛域收敛域收敛域分四种情况有限长序列
δ
41
∞
<
=
≥
=
∑
∑
∞
=
∞
=
1
1
1
1
1
)
(
,
)
(
,
0
:
,
)
(
)
(
:
2
n
n
n
n
n
n
z
n
x
z
z
z
X
n
z
n
x
z
X
即处绝对收敛在设因果序列当分两种情况右向序列
∞
<
≤
∴
∞
=
<
∞
≤
≤
≥
∴
∞
<
<
>
∑
∑
∞
=
∞
=
z
z
z
n
z
z
z
z
z
n
x
z
n
x
z
z
n
n
n
n
n
n
1
1
1
1
1
1
,
,
0
)
(
)
(
,
1
1
一点除去当或收敛域为时则当
2
2
2
2
0
,
0
0
,
0
:
,
)
(
)
(
:
3
2
z
z
n
z
z
n
z
n
x
z
X
n
n
n
≤
<
>
≤
≤
≤
=
∑
∞
=
当分两种情况左向序列
42
2
1
1
2
1
0
:
)
(
)
(
)
(
)
(
4
z
z
z
z
z
z
z
z
n
x
z
n
x
z
n
x
z
X
nn
n
n
n
n
≤
≤
∴
≥
≤
+
=
=
∑∑
∑
∞
=
∞
=
∞
∞
=
收敛域双边序列
.
,;
,;
,;
,
:
边界考虑零极点双边序列是圆环逆向因果含零点左向序列圆里面因果敛至无穷远右向序列圆外面零和无穷要察看面有限序列全总结
z
43
例
,
研究序列
b
a
z
n
b
n
a
n
x
n
n
<
≤
≥
=
已知变换及其收敛域的
1
,
0
,
)
(
∑∑
∑
∑
∑∑
∑
∞
=
∞
=
∞
=
∞
=
∞
∞
=
∞
=
∞
=
+
=
+
=
+
=
=
10
0
0
1
0
1
)
(
)
(
nn
n
n
n
n
n
n
n
n
n
n
nn
n
n
n
n
n
n
z
a
z
b
z
a
z
b
z
a
z
b
z
n
x
z
X
44
)
)(
(
)
2
(
1
1
1
1
1
1
1
1
b
z
a
z
b
a
z
z
a
z
z
b
z
z
a
z
z
z
b
b
az
z
b
=
+
=
+
=
+
=
b
z
a
<
<
)
(
z
R
e
)
(
z
jI
m
×
×
b
z
=
a
z
=
零极点图
45
1
2
1
2
1
53
1
1
),
(
)
(
),
(
)
(
.
.
1
,
2
2
r
z
r
z
X
n
x
r
z
r
z
X
n
x
p
z
<
<
<
<
则时间翻转几个注意点表见变换的性质二
[]
1
2
2
1
1
1
1
1
1
1
,
)
(
)
(
)
)(
(
)
(
)
(
)
(
:
r
z
r
r
z
r
z
X
z
X
z
m
x
z
m
x
z
n
x
n
x
Z
mm
m
m
n
n
<
<
∴
<
<
=
=
=
=
∞
∞
=
∞
∞
=
∞
∞
=
∑∑
∑
满足证明
Q
[]
[]
1
,
1
1
)
(
1
,
1
1
)
(
.
1
<
=
>
=
z
z
n
u
Z
z
z
n
u
Z
eg
46
)
0
(
),
(
)
(
)
(
)
(
.
.
2
>
±
±
m
z
X
z
m
n
x
z
x
n
x
z
m
双边变换不同双边与单边时移
[]
∑∑
∑
∞
=
∞
=
+
=
+
=
+
=
+
+
00
)
(
1
0
)
(
)
(
)
(
:
)
(
)
(
)
(
1
:
nn
m
n
m
n
m
k
k
m
z
n
m
x
z
z
m
n
x
m
n
x
Z
z
k
x
z
X
z
m
n
x
证明左移单边
=
=
=
+
=
∑
∑∑
∑
=
∞ =
∞
=
=
1
0
0
1
0
)
(
)
(
)
(
)
(
)
(
,
m
k
k
m
m
kk
m
k
k
k
m
k
m
z
k
x
z
X
z
z
k
x
z
k
x
z
z
k
x
z
n
m
k
则上式令
47
[
]
[
]
[]
[]
与是否因果无关可任意如
,
)
(
)
1
(
)
0
(
)
(
)
2
(
)
0
(
)
(
)
1
(
:
1
2
n
x
x
z
x
z
X
z
n
x
Z
x
z
X
z
n
x
Z
=
+
=
+
+
∑
=
1
)
(
)
(
)
(
2
m
k
k
m
z
k
x
z
X
z
m
n
x
右移双边与单边移位不同而左移造成不因果与双边相同则此时上式若序列为因果
∴
=
,
)
(
,
z
X
z
m
48
)
(
'
)
(
)
(
3
z
zX
dz
z
dX
z
n
nx
z
=
域微分
[]
[]
[] []
1
)
1
(
)
1
(
)
1
(
)
(
'
)
(
1
1
1
)
(
)
(
:
)
(
'
)
(
)
(
.
)
(
).
).(
(
)
(
'
)
(
)
(
:
2
2
1
1
1
)
1
(
>
=
=
=
=
=
=
∴
=
=
=
∴
=
∞
∞
=
∞
∞
=
+
∞
∞
=
∑∑
∑
z
z
z
z
z
z
z
z
zU
n
nu
Z
z
z
z
n
u
Z
z
n
nu
z
zX
n
nx
Z
n
nx
Z
z
z
n
nx
z
z
n
n
x
z
X
z
n
x
z
X
nn
n
n
n
n
收敛域变换的求例证明
49
[]
利用长除法的幂级数形式应展成是右序列圆外部时的序列及求已知例幂级数展开和长除法求已知反变换三、
,
)
(
,
)
(
,
25
.
1
)
(
25
.
1
25
.
1
8
.
0
1
1
)
(
:
1
.
1
)
(
)
(
,
)
(
)
(
1
1
∴
>
<
>
=
=
z
z
X
n
x
z
n
x
z
z
z
z
X
n
x
z
X
z
X
Z
n
x
z
∑
∞
=
=
=
∴
1
2
2
1
)
25
.
1
(
)
25
.
1
(
25
.
1
)
(
n
n
n
z
z
z
z
X
≤
>
=
∴
0
,
0
0
,
25
.
1
)
(
n
n
n
x
n
50
∑
∑
∞
=
∞
=
=
=
+
+
+
=
<
0
0
2
2
)
8
.
0
(
)
8
.
0
(
)
8
.
0
(
8
.
0
1
)
(
.
,
)
(
,
25
.
1
n
n
n
n
n
n
z
z
z
z
z
X
z
n
x
z
的幂级数形式展成左边序列若
>
≤
=
∴
0
,
0
0
,
)
8
.
0
(
)
(
n
n
n
x
n
)
(
),
1
log(
)
(
:
2
1
n
x
a
z
az
z
X
求例
>
+
=
∑
∞
=
+
=
+
1
1
1
)
1
(
)
1
log(
n
n
n
n
n
z
a
az
≤
≥
=
∴
+
0
,
0
1
,
)
1
(
)
(
1
n
n
n
a
n
x
n
n
51
a
z
z
az
1
1
1
.
2
已知部分分式展开
=
<
=
>
)
1
(
)
(
,
)
(
)
(
,
n
u
a
n
x
a
z
n
u
a
n
x
a
z
n
n
当当
)
(
n
x
或利用查表求相应的
)
(
,
3
2
,
6
5
)
(
)
(
,
1
,
)
1
)(
1
(
1
)
(
.
3
2
1
1
n
x
z
z
z
z
z
X
n
x
z
z
e
z
z
X
T
求求已知例
<
<
+
=
>
=
T
T
T
e
A
e
A
z
e
A
z
A
z
X
=
=
+
=
1
1
,
1
1
,
1
1
)
(
)
1
(
:
2
1
1
2
1
1
解
52
1
,
1
,
3
2
3
2
,
6
5
)
(
)
1
(
)
(
)
(
1
1
)
(
1
1
)
(
2
=
=
+
+
=
<
<
+
=
+
=
∴
B
A
z
Bz
z
Az
z
z
z
z
z
X
n
u
e
e
n
u
e
n
x
n
T
T
T
[]
)
1
(
)
3
(
)
(
2
)
1
(
)
3
(
)
(
2
)
(
3
2
)
(
+
=
=
∴
+
=
∴
n
u
n
u
n
u
n
u
n
x
z
z
z
z
z
X
n
n
n
n
<
>
=
=
0
,
)
3
(
0
,
2
0
,
1
n
n
n
n
n
53
5
,
5
6
9
)
(
),
(
.
4
2
2
>
+
=
z
z
z
z
z
z
X
n
x
求例
)
(
5
)
(
2
)
(
5
1
2
5
1
1
2
5
6
9
)
(
2
n
u
n
u
n
x
z
z
z
z
z
z
z
z
z
z
z
z
X
n
=
∴
=
=
+
=
54
2
/
1
,
4
/
3
,
4
/
1
)
1
(
1
1
)
1
)(
1
(
)
(
)
1
)(
1
(
)
(
3
2
1
2
3
2
1
2
2
2
3
=
=
=
+
+
+
=
+
=
+
=
A
A
A
z
A
z
A
z
A
z
z
z
z
z
X
z
z
z
z
X
1
)
(
.
21
)
(
.
43
)
(
.
)
1
(
41
)
(
)
1
(
.
21
1
.
43
1
.
41
)
(
2
>
+
+
=
∴
+
+
+
=
∴
z
n
nu
n
u
n
u
n
x
z
z
z
z
z
z
z
X
n
)
(
)
1
)(
1
(
1
)
(
.
5
2
1
1
n
x
z
z
z
X
相应的因果序列求例
+
=
55
{}
{
}
[]
[
]
[]
[]
).
(
).
(
).
(
).
(
,
)
(
Re
,
)
(
Re
)
(
:
,
)
(
,
.
3
1
1
1
1
k
k
b
z
n
k
a
z
n
k
k
k
n
k
k
n
k
k
z
z
X
b
z
z
z
X
a
z
b
z
z
X
s
a
z
z
X
s
n
x
c
z
X
b
a
=
=
=
=
∑
∑
据柯西留数定理可得与外部的两组极点内部在其收敛域上围线分别是设留数计算法
[]
)
(
.
).
(
,
Re
,
).
(
Re
)
(
.
0
,
,
,
)
(
,
1
1
)
(
:
.
,
)
(
1
1
n
u
a
a
z
z
a
z
a
a
z
z
s
a
z
z
X
s
n
x
n
c
a
a
z
z
z
X
a
z
az
z
X
n
a
z
n
n
n
=
=
=
=
∴
>
=
>
=
=
内在有一个极点例一般不常用留数法计算较复杂
56
)
1
(
.
)
(
.
,
0
,
,
=
<
<
n
u
a
n
x
n
c
a
z
n
非因果左边序列外极点在四、
z
变换与
Laplas
变换、
Fourier
变换的关系
∑∑
∫
∫
∞
∞
=
∞
∞
=
∞
∞
∞
∞
=
=
=
n
snT
n
st
st
s
e
nT
x
dt
e
nT
t
nT
x
dt
e
t
x
s
X
)
(
)
(
)
(
.
)
(
)
(
*
δ
57
)
(
)
(
nT
x
n
x
=
记
.
:
)
(
)
(
*
:
平面的映射变换得到平面到复变量复变量氏变换通过变换可由取样信号的拉序列的即由上式可看出
z
s
z
z
X
s
X
st
e
z
=
=
z
T
s
e
z
sT
ln
1
,
=
=
或
>
>
<
<
=
=
)
(
1
,
0
)
(
1
,
0
)
(
1
,
0
,
对应圆外对应圆内对应单位圆当讨论
zzz
σσσ
)
(
z
R
e
)
(
z
jI
m
1
=
z
j
s
σ
T
e
r
e
re
j
s
re
z
T
T
j
j
j
=
=
∴
=
+
=
=
+
ω
σ
σ
σ
ω
ω
,
,
,
)
(
则令
58
2
/
2
/
:
/
/
:
s
s
T
T
T
z
≤
≤
≤
≤
∴
≤
=
≤
即平面的相位的变化而对
π
π
π
ω
π
S
平面上相继宽度为的各子带都映射为同一
z
平面
s
ω
ω
ω
j
e
z
j
j
z
X
e
X
e
X
z
X
=
=
)
(
)
(
)
(
)
(
.
2
的关系与
59
五、系统函数
1
、定义
∑
∞
∞
=
=
n
n
z
n
h
z
H
z
n
h )
(
)
(
:
)
(
变换的单位取样响应
2
、
H(z)
的收敛域与系统稳定性的关系
1
)
(
=
z
z
H
的收敛域包括单位圆为定的充要条件对线性非移变系统其稳
60
定性讨论并判断该系统的稳某线性非移变系统例
),
(
)
1
(
)
(
:
1
n
x
n
ay
n
y
+
=
1
1
1
1
)
(
)
(
)
(
)
(
:
=
∴
+
=
az
z
H
z
X
z
Y
az
z
Y
z
变换对两边作
1
,
)
1
(
)
(
,
2
.
,
1
)
(
)
(
:
1
>
=
<
<
∴
=
>
a
n
u
a
n
h
a
z
a
n
u
a
n
h
a
z
n
n
要使系统稳定若系统是非因果的系统才是稳定的时只有当则其收敛域为若系统为因果系统讨论
61
)
(
)
(
,
1
)
(
)
(
)
(
)
(
.
,
1
0
)
(
.
)
(
1
1
)
(
.
.
2
1
1
1
n
h
z
H
z
H
z
H
dc
a
b
a
a
az
z
a
z
H
稳定时对应的求令系统证明该系统是一个全通画出零极点图及收敛域若的范围求系统稳定时系统函数的线性非移变因果研究一个具有下列系统例
=
<
<
=
零极点图及收敛域要使系统稳定收敛域为代表一个因果系统解
)
(
1
.
)
(
1
1
)
(
)
(
:
1
1
1
1
b
a
a
z
z
H
a
z
a
z
az
z
a
z
H
a
<
∴
>
∴
=
=
Q
)
(
z
jI
m
)
(
z
R
e
1
a1
×
a
z
=
62
ω
ω
ω
ω
ω
ω
ω
ω
sin
cos
sin
1
cos
1
)
(
)
(
)
(
j
a
j
a
a
e
a
e
z
H
e
H
c
j
j
e
z
j
j
+
+
=
=
=
=
[]
)
1
(
)
(
)
(
),
(
)
(
.
)
(
)
1
(
)
(
,
)
(
)
(
1
,
1
1
,
1
0
.
)
(
)
(
,
1
)
(
).
(
)
(
2
2
1
1
1
1
1
1
1
1
1
1
1
=
∴
=
=
=
∴
<
→
<
∴
>
<
<
=
∴
=
n
u
a
n
u
a
n
h
n
u
a
n
u
a
a
a
z
z
az
a
z
a
n
u
a
a
z
z
a
z
a
a
z
z
z
H
n
h
a
z
a
z
a
a
z
H
a
z
a
z
z
H
z
H
z
H
d
n
n
a
n
n
Q
Q
Q
Q
为左向序列又稳定收敛域包含单位圆
a
aa
e
H
j
1
sin
)
(cos
sin
)
1
(cos
)
(
2
2
2
2
=
+
+
=
∴
ω
ω
ω
ω
ω
63
[]
)
1
(
)
(
)
(
),
(
)
(
.
)
(
)
1
(
)
(
,
)
(
)
(
1
,
1
1
,
1
0
.
)
(
)
(
,
1
)
(
).
(
)
(
2
2
1
1
1
1
1
1
1
1
1
1
1
=
∴
=
=
=
∴
<
→
<
∴
>
<
<
=
∴
=
n
u
a
n
u
a
n
h
n
u
a
n
u
a
a
a
z
z
az
a
z
a
n
u
a
a
z
z
a
z
a
a
z
z
z
H
n
h
a
z
a
z
a
a
z
H
a
z
a
z
z
H
z
H
z
H
d
n
n
a
n
n
Q
Q
Q
Q
为左向序列又稳定收敛域包含单位圆
64
[]
[
]
∑
∞
<
<
=
=
→
→
→
→
.
)
(
,
)
(
:
0
,
0
)
(
:
)
(
)
(
),
(
)
(
:
:
2
)
(
)
(
)
(
)
(
.
1
:
收敛域包括单位圆稳定因果非移变满足叠加原理线性线性非移变系统总结
z
H
n
h
n
n
h
k
n
y
k
n
x
T
n
y
n
x
T
z
H
e
H
n
h
n
j
ω
δ
65
sT
e
z
s
z
z
zz
=
平面对应关系平面零极点图变换即傅立叶变换单位圆上的反变换双边序列左向序列右向序列有限序列变换收敛域
.
.
6
.
5
.
4
.
3
第二章时域离散信号和系
§
1 时域离散信号---序列一、时域表示法一个数字序列x,它的第n个数字以x(n)表示,
则记:
{
}
+
∞
<
<
∞
=
n
n
x
x
,
)
(
12
0
-1
-2
x(n)
n
一般用
x(n)
表示,或称序列
x(n)
2
注意:当
n
不是整数,
x(n)
无定义常用序列:
1
、单位取样序列
)
(
n
δ
n
1
)
(
n
δ
0
≠
=
=
0
,
0
0
,
1
)
(
n
n
n
δ
2
、单位阶跃序列
u(n)
...
0
n
u(n)
<
≥
=
0
,
0
0
,
1
)
(
n
n
n
u
3
∑
∞
=
=
=
0
)
(
)
(
),
1
(
)
(
)
(
:
k
k
n
n
u
n
u
n
u
n
δ
δ
而显然注意移位关系
:
u(n-1)
将
u(n)
右移
1
点
u(n+1)
将
u(n)
左移
1
点
u(-n-1)
将
u(-n)
左移
1
点
u(-n+1)
将
u(-n)
右移
1
点
3.
实指数序列
1
a
0
<
<
n
a
...
1
0n
-1
4
)
(
0
n
n
x
→
…
)
(
n
x
0
0
>
n
1
z
1
z
1
z
[]
n
j
n
e
e
n
A
n
n
j
0
0
)
(
0
0
sin
cos
:
.
5
,
),
cos(
:
.
4
0
ω
ω
φ
ω
φ
ω
σ
ω
σ
+
=
+
+
复指数序列实数正弦序列
{}
{}
{}
)
(
:
)
(
)
(
,
)
(
.
)
(
)
(
)
(
,
)
(
)
(
)
(
).
(
)
(
,
)
(
).
(
.
.
0
n
n
x
n
x
n
x
n
x
x
n
y
n
x
n
x
n
y
n
x
y
x
n
y
n
x
n
x
n
y
n
x
y
x
→
→
=
±
→
⊕
→
±
=
±
→
→
=
延迟或移位序列的运算二
α
α
α
α
>
)
(
n
y
↑
)
(
n
y
↑
±
5
三
,
序列的周期性对所有
n:x(n)=x(n+N),N
为最小的正整数
.
则称
x(n)
为周期序列
,
周期为
N
eg,
复指数序列
<1>
当
σ
n
j
e
n
x
)
(
0
)
(
ω
σ
+
=
0
≠
非周期非周期
)
(
.
n
x
e
n
∴
σ
Q
)
/
2
(
)
2
(
0
0
0
0
)
(
,
0
2
ω
π
ω
π
ω
ω
σ
+
+
=
=
=
=
n
j
n
j
n
j
e
e
e
n
x
当
6
=
非周期为无理数若其周期为互素若其周期为为整数若
,
2
2
P
)
Q
(P,
,
2
2
,
2
0
0
0
0
0
ω
π
ω
π
ω
π
ω
π
ω
π
P
Q
2
)
(
∑
+∞
∞
=
=
n
n
x
ε
四、序列的能量五、序列的单位取样表示任何序列可表示成各延迟单位取样的幅度的加权和
7
Eg,x(n)
∑
=
=
+
+
+
=
3
0
)
(
)
(
)
3
(
)
3
(
)
2
(
)
2
(
)
1
(
)
1
(
)
(
)
0
(
)
(
k
k
n
k
x
n
x
n
x
n
x
n
x
n
x
δ
δ
δ
δ
δ
12
0
x(0)
n
3
x(1)
x(2)
x(3)
∑
∞
∞
=
=
k
k
n
k
x
n
x
)
(
)
(
)
(
δ
一般:
六、序列的频域表示
---
傅立叶变换
8
∫
∫
∞
∞
∞
∞
=
=
d
e
j
X
t
x
dt
e
t
x
j
X
t
j
a
a
t
j
a
a
)
(
2
1
)
(
)
(
)
(
π
模拟信号对离散信号
x(n)
,积分
->
求和
∫
∑
∞
∞
=
=
=
π
π
ω
ω
ω
ω
ω
π
d
e
e
X
n
x
e
n
x
e
X
n
j
j
n
n
j
j
)
(
2
1
)
(
)
(
)
(
T
e
X
j
=
ω
ω
π
ω
,
,
,
2
)
(
数字频率模拟频率的周期为注
9
§
2
线性非移变系统系统:将输入
x
(
n)
映射成输出序列
y
(
n
)的唯一性变换或运算
x(n)——>T[x(n)]——>y(n) y(n)=T[x(n)]
一、线性系统满足叠加原理:
[
]
[
]
)
(
)
(
,
)
(
)
(
2
2
1
1
n
x
T
n
y
n
x
T
n
y
=
=
[]
[
]
[
]
)
(
)
(
)
(
)
(
)
(
)
(
2
1
2
1
2
1
n
by
n
ay
n
x
bT
n
x
aT
n
bx
n
ax
T
b
a
+
=
+
=
+
、
若则
T
为线性系统,
eg,y(n)=2x(n)
[]
[
]
)
(
2
)
(
.
)
(
)
(
,
)
(
)
(
n
x
n
y
eg
T
k
n
x
T
k
n
y
n
x
T
n
y
=
=
=
为非移变系统则若设二、非移变系统非移变
)
(
2
)
(
k
n
x
k
n
y
=
10
[]
[]
[
]
[
]
∑
∑
∑
∞
∞
=
∞
∞
=
∞
∞
=
=
=
=
=
→
→
k
k
k
k
n
T
k
x
k
n
k
x
T
k
n
k
x
T
n
x
T
n
y
n
y
T
n
x
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
δ
δ
δ
变系统的响应三、信号通过线性非移
[]
∑∑
∞
∞
=
∞
∞
=
=
=
=
=
=
kk
k
n
x
k
h
n
x
n
h
n
h
n
x
k
n
h
k
x
n
y
n
T
n
h
)
(
)
(
)
(
*
)
(
)
(
*
)
(
)
(
)
(
)
(
则系统的单位取样响应
—
)
(
)
(
令
δ
单位取样响应
—
单位取样序列
—
注
)
(
)
(
n
h
n
δ
)
(
*
)
(
)
(
*
)
(
)
(
:
n
x
n
h
n
h
n
x
n
y
=
=
的卷积为输入与单位取样响应线性非移变系统的输出即
)
(
),
(
n
h
n
x
卷积:
1
24
n
0
3
1
11
∑
∞
∞
=
=
k
k
n
h
k
x
n
y
)
(
)
(
)
(
0
k
x(k)
123
-3
k
h(-k)
-2
-1
0
-4
4
1
1
12
每一步向右移一位
0
1
8
2
7
3
6
4
5
5
4
4
3
3
2
2
2
1
*
1
1
*
1
)
1
(
,
1
1
1
*
1
)
0
(
,
0
,其余为
)
(
,
)
(
)
(
,
)
(
,
)
(
,
)
(
,
)
(
,
同理
=
=
=
=
=
=
=
=
=
+
=
=
=
=
=
y
y
y
y
y
y
y
n
y
n
y
n
12
0
n
3
4
56
7
8
1
2
3
4
5
y(n)
13
卷积计算方法:
=
=
=
≥
=
∑
∞
∞
=
再相加对应的幅值相乘与将再相加对应的的幅值相乘与将再相加对应的幅值相乘与将有值的两个序列对
,
)
2
(
)
(
:
2
.
,
)
1
(
)
(
:
1
.
,
)
(
)
(
:
0
)
0
)(
(
)
(
)
(
k
h
k
x
n
k
h
k
x
n
k
h
k
x
n
n
k
n
h
k
x
n
y
k
14
:
,
:
.
1
.
稳定的充要条件是对线性非移变系统的输出对有界的输入产生有界稳定系统系统的稳定性和因果性四
∞
<
=
∑
∞
∞
=
k
k
h
s
)
(
∞
<
∞
<
<
∑
∞
∞
=
)
(
)
(
,
)
(
1
n
y
k
h
M
n
x
k
则由设充分性证明:
∞
<
≤
≤
=
=
∑
∑
∑
∑
∞
∞
∞
∞
=
∞
∞
=
∞
∞
=
)
(
)
(
)
(
)
(
)
(
)
(
)
(
k
h
M
k
h
M
k
n
x
k
h
k
n
h
k
x
n
y
k
k
k
Q
15
∞
=
∑
∞
∞
=
k
k
h
)
(
:
设用反证法
=
)
(
n
x
取
)
(
/
)
(
*
n
h
n
h
0
0
)
(
≠
n
h
0
)
(
=
n
h
有界即则
)
(
,
1
)
(
n
x
n
x
=
∞
<
∑
∞
∞
=
k
k
h
)
(
:
由系统稳定必要性
∞
=
=
=
=
=
=
=
∑
∑
∑∑
∞
∞
=
∞
∞
=
∞
∞
=
∞
∞
=
s
k
h
k
h
k
h
k
h
k
h
k
h
k
x
k
h
y
n
k
k
kk
)
(
)
(
)
(
)
(
)
(
*
)
(
)
(
)
(
)
0
(
0
,
2
时的输出此时
16
即此时输出无界,系统不稳定,与条件矛盾
2
、因果系统
:
物理可实现系统 输出的变化不会发生在输入之前
,
即某时刻的输出只与该时刻及该时刻以前的输入有关
,
而与该时刻以后的输入无关
.
对于线性非移变系统
,
因果性的充要条件是当
n<0
时
,h(n)=0
同样若对一个离散序列
x(n)
若
n<0,x(n)=0,
称
x(n)
为因果序列
17
∑
∑
∞
=
∞
∞
=
=
=
∴
=
<
=
0
)
(
0
)
(
,
0
)
(
)
(
:
1
k
k
k
n
a
k
h
s
n
u
n
n
u
a
n
h
又是因果系统性试判断其稳定性及因果
、某线性非移变系统例
Q
时才稳定该系统只有在时而时当
1
,
1
1
1
,
1
<
∴
∞
=
≥
∞
<
=
<
∴
a
s
a
a
s
a
18
)
6
7
2
sin(
)
(
)
(
4
3
2
1
.
2
π
π
+
=
n
n
x
n
y
稳定性因果性非移变性线性判断下述系统的例 []
[]
是线性系统
∴
+
=
+
+
+
=
+
+
=
+
+
=
+
=
)
(
)
(
)
6
7
2
sin(
)
(
)
6
7
2
sin(
)
(
6
7
2
sin
)
(
)
(
)
(
)
(
)
6
7
2
sin(
)
(
)
(
)
6
7
2
sin(
)
(
)
(
1
2
1
2
1
2
1
2
1
2
2
1
1
n
y
n
y
n
n
x
n
n
x
n
n
x
n
x
n
x
n
x
T
n
n
x
n
y
n
n
x
n
y
π
π
π
π
π
π
π
π
π
π
19
[]
[]
不是非移变系统而
∴
≠
+
=
+
=
)
(
)
6
)
(
7
2
sin(
)
(
)
(
)
6
7
2
sin(
)
(
)
(
2
k
n
x
T
k
n
k
n
x
k
n
y
n
k
n
x
k
n
x
T
π
π
π
π
Q
是因果系统时刻以后的输入无关与时刻的输入有关时刻的输出只与
∴
n
n
n
3
)
(
)
6
7
2
sin(
.
)
(
)
(
4
n
x
n
n
x
n
y
≤
+
≤
π
π
稳定性
20
稳定则若
∴
∞
<
∞
<
∴
)
(
,
)
(
n
y
n
x
21
§
3
时域离散序列的傅立叶变换
∞
<
=
∑
∑
∞
∞
=
∞
∞
=
n
n
n
j
j
n
x
e
n
x
e
X
n
x
)
(
:
)
(
)
(
),
(
收敛条件对一、定义
ω
ω
:
,
)
(
),
(
)
(
2
1
)
(
:
即频率响应为系统的定义其傅立叶变换对单位取样响应反变换
ω
π
π
ω
ω
ω
π
j
n
j
j
e
H
n
h
d
e
e
X
n
x
∫
=
∫
∑
∞
∞
=
=
=
π
π
ω
ω
ω
ω
ω
π
π
d
e
e
H
n
h
e
n
h
e
H
n
j
j
n
n
j
j
)
(
2
1
)
(
:
)
2
(
)
(
)
(
而的连续函数周期为
22
)
(
else
0,
1
-
N
n
0
,
1
)
(
.
1
ω
j
e
H
n
h
求已知例
≤
≤
=
...
0123
N
-
1
n
h(n)
1
)
(
)
(
1
1
)
(
)
(
2
2
2
2
2
2
1
0
1
0
ω
ω
ω
ω
ω
ω
ω
ω
ω
ω
ω
j
j
j
N
j
N
j
N
j
N
n
N
n
j
N
j
n
j
n
j
j
e
e
e
e
e
e
e
e
e
e
n
h
e
H
=
=
=
=
=
=
∑∑
[]
)
(
arg
2
).
1
(
.
)
(
.
)
2
sin(
)
2
sin(
ω
ω
ω
ω
ω
j
e
H
j
j
N
j
e
e
H
e
N
=
23
[]
ω
ω
ω
ω
ω
2
1
)
(
arg
2
sin
)
2
sin(
)
(
:
=
=
N
e
H
N
e
H
j
j
相位幅度
)
(
ω
j
e
H
π
N
π
2
N
π
2
π
π
2
0
N
π
2
24
0
1
)
(
.
2
c
≤
≤
≤
=
π
ω
ω
ω
ω
ω
c
j
e
H
理想低通滤波器例
0
c
ω
c
ω
)
(
ω
j
e
H
1
π
π
c
ω
π
+
2
π
2
c
ω
π
2
π
2
ω
求
h(n)
并分析其稳定性和因果性
25
[
]
[]
)
sin(
1
2
1
1
.
2
1
2
1
)
(
n
n
e
e
n
j
e
jn
d
e
n
h
c
n
j
n
j
n
j
n
j
c
c
c
c
c
c
ω
π
π
π
ω
π
ω
ω
ω
ω
ω
ω
ω
ω
=
=
=
=
∫
21
:
)
(
,
2
/
如图时当
n
h
c
π
ω
=
π
1
π
1
3
3
12
0
2
1
π
3
1
π
3
1
26
念很重要但理想低通滤波器的概不稳定不收敛又非因果显然
∴
→
≤
=
∴
≠
<
∑
∑
∑
∞
∞
=
∞
∞
=
∞
∞
=
k
k
c
k
k
k
k
k
h
n
h
n
1
1
sin
)
(
,
0
)
(
,
0
,
π
π
ω
∑
∞
∞
=
=
=
k
k
n
h
k
x
n
h
n
x
n
y
)
(
)
(
)
(
*
)
(
)
(
.
线性非移变傅立叶变换关系系统输出与输入序列的二
∑∑
∑
∞
∞
=
∞
∞
=
∞
∞
=
=
=
n
n
j
k
n
n
j
j
e
k
n
h
k
x
e
n
y
e
Y
ω
ω
ω
.
)
(
)
(
)
(
)
(
则
∑∑
∞
∞
=
∞
∞
=
=
kn
n
j
e
k
n
h
k
x
ω
)
(
)
(
27
)
(
)
(
)
(
.
)
(
)
(
.
)
(
)
(
ω
ω
ω
ω
ω
j
j
jw
k
k
j
n
k
n
j
k
k
j
e
H
e
X
e
H
e
k
x
e
k
n
h
e
k
x
=
=
=
∑
∑
∑
∞
∞
=
∞
∞
=
∞
∞
=
几个定义对称性质三、傅立叶变换的一些
.
1
可表示成任意一个序列共轭反对序列共轭对称序列
)
(
)
3
(
)
(
*
)
(
:
)
2
(
)
(
*
)
(
:
)
1
(
n
x
n
x
n
x
n
x
n
x
o
o
e
e
=
=
28
[]
[]
)
(
*
)
(
21
)
(
)
(
*
)
(
21
)
(
,
)
(
)
(
)
(
n
x
n
x
n
x
n
x
n
x
n
x
n
x
n
x
n
x
o
e
o
e
=
+
=
+
=
其中对实序列
)
4
(
)
(
)
(
:
)
(
)
(
:
n
x
n
x
n
x
n
x
o
o
e
e
=
=
奇序列偶序列
)
(
)
(
)
()
5
(
ω
ω
ω
j
o
j
e
j
e
X
e
X
e
X
+
=
和共轭反对称傅立叶变换的共轭对称
[
]
[]
)
(
*
)
(
21
)
(
)
(
*
)
(
21
)
(
,
ω
ω
ω
ω
ω
ω
j
j
j
o
j
j
j
e
e
X
e
X
e
X
e
X
e
X
e
X
=
+
=
其中
29
)
(
*
)
(
:
)
(
)
(
*
)
(
:
)
(
0
ω
ω
ω
ω
ω
ω
j
o
j
o
j
j
e
j
e
j
e
e
X
e
X
e
X
e
X
e
X
e
X
=
=
是共轭反对称是共轭对称
)
(
*
)
(
*
),
(
*
)
(
*
,
)
(
)
)(
(
1
:
.
2
ω
ω
ω
j
j
j
e
X
n
x
e
X
n
x
e
X
n
x
→
→
→
则复序列几个性质
)
(
)
(
)
(
)
(
*
)
(
*
)
(
)
(
*
:
*
*
*
*
ω
ω
ω
ω
ω
ω
ω
j
n
n
j
nn
n
j
n
j
j
n
n
j
n
n
j
e
X
e
n
x
e
n
x
e
n
x
e
X
e
n
x
e
n
x
=
=
=
=
=
∑
∑∑
∑
∑
∞
∞
=
∞
∞
=
∞
∞
=
∞
∞
=
∞
∞
=
证明
[]
[
]
[]
[]
)
(
)
(;
)
(
Re
)
(
)
(
)
(
);
(
)
(
Re
2
ω
ω
ω
ω
j
m
o
j
e
j
o
m
j
e
e
X
jI
n
x
e
X
n
x
e
X
n
x
jI
e
X
n
x
→
→
→
→
30
[]
[]
[]
[]
)
(
)
(
*
)
(
21
)
(
*
)
(
21
)]
(
Im[
)
(
)
(
*
)
(
21
)
(
*
)
(
21
)]
(
Re[
:
ω
ω
ω
ω
ω
ω
j
o
j
jw
j
e
j
j
e
X
e
X
e
X
n
x
n
x
n
x
j
e
X
e
X
e
X
n
x
n
x
n
x
=
→
=
=
+
→
+
=
证明
[]
[
]
[
]
[]
[]
[
]
)
(
)
(
*
)
(
21
)
(
*
)
(
21
)
(
)
(
Re
)
(
*
)
(
21
)
(
*
)
(
21
)
(
0
ω
ω
ω
ω
ω
ω
j
m
j
j
j
j
j
e
e
X
jI
e
X
e
X
n
x
n
x
n
x
e
X
e
X
e
X
n
x
n
x
n
x
=
→
=
=
+
→
+
=
,
)
(
*
)
(
1
)
(
)
(
*
)
(
3
因此是共轭对称根据性质实序列
ω
ω
j
j
e
X
e
X
n
x
n
x
n
x
=
∴
=
Q
[
]
[
]
[]
[
]
奇函数偶函数
→
=
→
=
)
(
)
(
)
(
Re
)
(
Re
ω
ω
ω
ω
j
m
j
m
j
j
e
X
I
e
X
I
e
X
e
X
31
[
]
)
(
arg
)
(
)
(
:
ω
ω
ω
j
e
X
j
j
j
e
e
X
e
X
=
若记同理
[]
[
]
)
(
)
(
arg
)
(
arg
)
(
)
(
)
(
,
相位奇函数幅度偶函数则
→
=
→
=
ω
ω
ω
ω
j
j
j
j
e
X
e
X
e
X
e
X
数而虚部和相位均为奇函的实部和模是偶函数其傅立叶变换而且称的的傅立叶变换是共轭对一个实数序列即
)
(
,
.
)
(
,
ω
j
e
X
n
x
32
§
4
时域连续信号的采样一、采样定理
→
)
(
t
x
)
(
t
x
s
→
∑
∞
∞
=
=
n
T
nT
t
t
)
(
)
(
δ
δ
)
(
)
(
)
(
)
(
)
(
)
(
)
(
nT
t
nT
x
nT
t
t
x
t
t
x
t
x
n
n
T
s
=
=
=
∑
∑
∞
∞
=
∞
∞
=
δ
δ
δ
)
(
*
)
(
2
1
)
(
).
(
:
2
1
2
1
X
X
t
x
t
x
π
根据傅立叶变换的性质
)
(
*
)
(
2
1
)
(
=
∴
T
s
X
x
δ
π
33
))
0
(
)
(
)
(
:
(
1
).
(
1
)
(
,
)
(
,
2
/
2
/
.
1
2
x
dt
t
t
x
T
dt
e
t
T
A
e
A
t
t T
T
t
jn
n
n
t
T
n
j
n
T
T
s
=
=
=
=
∫
∫
∑
∞
∞
∞
∞
=
δ
δ
δ
δ
π
注展成傅立叶级数是周期函数而
Q
∑
∑
∞
∞
=
∞
∞
=
=
=
∴
n
t
jn
n
t
nf
j
T
s
s
e
T
e
T
t
1
1
)
(
2
π
δ
[
]
∑
∞
∞
=
=
∴
=
n
s
T
s
t
jn
n
T
n
e
F
s
)
(
2
)
(
)
(
2
δ
π
δ
πδ
Q
∑
∑
∞
∞
=
∞
∞
=
=
=
=
∴
n
s
n
s
T
s
n
x
T
n
x
T
x
x
)
(
1
)
(
*
)
(
2
2
1
)
(
*
)
(
2
1
)
(
δ
π
π
δ
π
34
结论:采样后信号的频谱是原连续信号的频谱以
T
s
π
2
=
为周期的周期延拓
)
(
)
(
)
2
,
1
,
0
(
:
采样频率原频率等混叠频率
s
A
s
A
nf
f
f
n
n
=
±
±
=
=
c
c
s
s
35
设信号的最高频率为
f
c
,带宽为
2f
c
而采样频率为
f
s
则,当时
c
s
f
f
2
≥
不会产生混叠误差,可以恢复
---
采样定理
36
)
(
)
(
1
)
(
2
2
:
频域采用窗函数时当信号的恢复二、
=
≤
∴
≥
X
T
X
s
s
c
s
Q
s
c
2
s
2
s
c
s
)
(
s
X
=
)
(
R
w
2
/
,
0
2
/
,
1
s
s
>
≤
)
(
).
(
)
(
*
)
(
:
)
(
).
(
.
)
(
=
R
s
r
s
R
s
W
X
t
w
t
x
W
x
T
x
据傅立叶变换性质整提取出来即可将原信号的频谱完
37
)
2
/
(
1
)
2
/
(
2
)
(
)
(
*
)
(
)
(
t
s
T
t
s
t
w
t
w
t
Tx
t
x
s
a
s
a
s
R
R
s
=
=
=
∴
π
而
∑∑
∞
∞
=
∞
∞
=
=
=
nn
s
nT
t
nT
x
nT
t
t
x
t
x
)
(
)
(
)
(
)
(
)
(
δ
δ
∑∑∑
∑
∞
∞
=
∞
∞
=
∞
∞
=
∞
∞
=
=
=
=
=
∴
nn
a
s
n
a
s
a
n
nT
t
T
nT
t
T
nT
x
nT
t
T
s
nT
x
nT
t
s
nT
x
t
s
T
nT
t
nT
x
T
t
x
)
(
)
(
sin
)
(
)
(
).
(
)
(
2
).
(
)
2
(
1
*
)
(
)
(
)
(
π
π
π
δ
即由取样点及内插函数可恢复 原始信号x(t)
38
§
5 Z
变换(复频域分析)
一、
Z
变换的定义
1
、定义
∑
∑
∞
=
∞
∞
=
==
0
)
(
)
(
:
)
(
)
(
:
n
n
n
n
z
n
x
z
X
z
z
n
x
z
X
z
变换单边变换双边
∞
<
<
∞
n
n
x
),
(
)
(
)
(
,
1
1
)
(
)
)(
(
)
(
)
(
,
,
)
(
ω
ω
ω
ω
j
n
n
j
n
n
n
j
n
n
j
e
X
z
X
z
r
e
r
n
x
re
n
x
z
n
x
z
X
re
z
n
x
=
=
=
=
=
=
=
∑
∑
∑
∞
∞
=
∞
∞
=
∞
∞
=
时即当一般则两者意义相同因果序列若
39
∞
<
∞
<
∑
∑
∞
∞
=
∞
∞
=
n
n
n
j
n
x
r
Z
n
x
e
X
z
z
X
)
(
)
(
)
(
)
(
.
2
变换收敛的条件对收敛的条件对值的集合解析的所有使收敛域
ω
变换必须注明其收敛域注的收敛域为变换的绝对可加则而如其傅立叶变换不收敛如
z
z
z
u
z
n
u
n
u
r
r
n
u
n
x
n
:
1
)
(
)
(
.
)
(
,
1
.
),
(
)
(
:
∞
≤
<
∴
>
=
40
.
,
0
,
:
)
(
,
2
1
2
1
性质有关变换的收敛域与序列的其中平面上的环状区域收敛于一个一般情况
z
z
z
z
z
z
z
z
X
∞
≤
≥
<
<
0
)
(
z
jI
m
单位圆
1
=
z
1
z
2
z
)
(
z
R
e
)
(
z
jI
m
)
(
z
R
e
∞
≤
≤
=
=
∞
≤
<
>
>
∞
<
<
>
<
∞
<
≤
<
<
=
∑
=
z
n
n
n
z
n
n
z
n
n
z
n
n
z
n
x
z
X
n
n
n
n
0
,
)
(
0
,
0
0
,
0
,
0
0
,
0
,
0
0
,
0
,
0
:
,
)
(
)
(
:
1
2
1
2
1
2
1
2
1
2
1
收敛域特殊收敛域收敛域收敛域分四种情况有限长序列
δ
41
∞
<
=
≥
=
∑
∑
∞
=
∞
=
1
1
1
1
1
)
(
,
)
(
,
0
:
,
)
(
)
(
:
2
n
n
n
n
n
n
z
n
x
z
z
z
X
n
z
n
x
z
X
即处绝对收敛在设因果序列当分两种情况右向序列
∞
<
≤
∴
∞
=
<
∞
≤
≤
≥
∴
∞
<
<
>
∑
∑
∞
=
∞
=
z
z
z
n
z
z
z
z
z
n
x
z
n
x
z
z
n
n
n
n
n
n
1
1
1
1
1
1
,
,
0
)
(
)
(
,
1
1
一点除去当或收敛域为时则当
2
2
2
2
0
,
0
0
,
0
:
,
)
(
)
(
:
3
2
z
z
n
z
z
n
z
n
x
z
X
n
n
n
≤
<
>
≤
≤
≤
=
∑
∞
=
当分两种情况左向序列
42
2
1
1
2
1
0
:
)
(
)
(
)
(
)
(
4
z
z
z
z
z
z
z
z
n
x
z
n
x
z
n
x
z
X
nn
n
n
n
n
≤
≤
∴
≥
≤
+
=
=
∑∑
∑
∞
=
∞
=
∞
∞
=
收敛域双边序列
.
,;
,;
,;
,
:
边界考虑零极点双边序列是圆环逆向因果含零点左向序列圆里面因果敛至无穷远右向序列圆外面零和无穷要察看面有限序列全总结
z
43
例
,
研究序列
b
a
z
n
b
n
a
n
x
n
n
<
≤
≥
=
已知变换及其收敛域的
1
,
0
,
)
(
∑∑
∑
∑
∑∑
∑
∞
=
∞
=
∞
=
∞
=
∞
∞
=
∞
=
∞
=
+
=
+
=
+
=
=
10
0
0
1
0
1
)
(
)
(
nn
n
n
n
n
n
n
n
n
n
n
nn
n
n
n
n
n
n
z
a
z
b
z
a
z
b
z
a
z
b
z
n
x
z
X
44
)
)(
(
)
2
(
1
1
1
1
1
1
1
1
b
z
a
z
b
a
z
z
a
z
z
b
z
z
a
z
z
z
b
b
az
z
b
=
+
=
+
=
+
=
b
z
a
<
<
)
(
z
R
e
)
(
z
jI
m
×
×
b
z
=
a
z
=
零极点图
45
1
2
1
2
1
53
1
1
),
(
)
(
),
(
)
(
.
.
1
,
2
2
r
z
r
z
X
n
x
r
z
r
z
X
n
x
p
z
<
<
<
<
则时间翻转几个注意点表见变换的性质二
[]
1
2
2
1
1
1
1
1
1
1
,
)
(
)
(
)
)(
(
)
(
)
(
)
(
:
r
z
r
r
z
r
z
X
z
X
z
m
x
z
m
x
z
n
x
n
x
Z
mm
m
m
n
n
<
<
∴
<
<
=
=
=
=
∞
∞
=
∞
∞
=
∞
∞
=
∑∑
∑
满足证明
Q
[]
[]
1
,
1
1
)
(
1
,
1
1
)
(
.
1
<
=
>
=
z
z
n
u
Z
z
z
n
u
Z
eg
46
)
0
(
),
(
)
(
)
(
)
(
.
.
2
>
±
±
m
z
X
z
m
n
x
z
x
n
x
z
m
双边变换不同双边与单边时移
[]
∑∑
∑
∞
=
∞
=
+
=
+
=
+
=
+
+
00
)
(
1
0
)
(
)
(
)
(
:
)
(
)
(
)
(
1
:
nn
m
n
m
n
m
k
k
m
z
n
m
x
z
z
m
n
x
m
n
x
Z
z
k
x
z
X
z
m
n
x
证明左移单边
=
=
=
+
=
∑
∑∑
∑
=
∞ =
∞
=
=
1
0
0
1
0
)
(
)
(
)
(
)
(
)
(
,
m
k
k
m
m
kk
m
k
k
k
m
k
m
z
k
x
z
X
z
z
k
x
z
k
x
z
z
k
x
z
n
m
k
则上式令
47
[
]
[
]
[]
[]
与是否因果无关可任意如
,
)
(
)
1
(
)
0
(
)
(
)
2
(
)
0
(
)
(
)
1
(
:
1
2
n
x
x
z
x
z
X
z
n
x
Z
x
z
X
z
n
x
Z
=
+
=
+
+
∑
=
1
)
(
)
(
)
(
2
m
k
k
m
z
k
x
z
X
z
m
n
x
右移双边与单边移位不同而左移造成不因果与双边相同则此时上式若序列为因果
∴
=
,
)
(
,
z
X
z
m
48
)
(
'
)
(
)
(
3
z
zX
dz
z
dX
z
n
nx
z
=
域微分
[]
[]
[] []
1
)
1
(
)
1
(
)
1
(
)
(
'
)
(
1
1
1
)
(
)
(
:
)
(
'
)
(
)
(
.
)
(
).
).(
(
)
(
'
)
(
)
(
:
2
2
1
1
1
)
1
(
>
=
=
=
=
=
=
∴
=
=
=
∴
=
∞
∞
=
∞
∞
=
+
∞
∞
=
∑∑
∑
z
z
z
z
z
z
z
z
zU
n
nu
Z
z
z
z
n
u
Z
z
n
nu
z
zX
n
nx
Z
n
nx
Z
z
z
n
nx
z
z
n
n
x
z
X
z
n
x
z
X
nn
n
n
n
n
收敛域变换的求例证明
49
[]
利用长除法的幂级数形式应展成是右序列圆外部时的序列及求已知例幂级数展开和长除法求已知反变换三、
,
)
(
,
)
(
,
25
.
1
)
(
25
.
1
25
.
1
8
.
0
1
1
)
(
:
1
.
1
)
(
)
(
,
)
(
)
(
1
1
∴
>
<
>
=
=
z
z
X
n
x
z
n
x
z
z
z
z
X
n
x
z
X
z
X
Z
n
x
z
∑
∞
=
=
=
∴
1
2
2
1
)
25
.
1
(
)
25
.
1
(
25
.
1
)
(
n
n
n
z
z
z
z
X
≤
>
=
∴
0
,
0
0
,
25
.
1
)
(
n
n
n
x
n
50
∑
∑
∞
=
∞
=
=
=
+
+
+
=
<
0
0
2
2
)
8
.
0
(
)
8
.
0
(
)
8
.
0
(
8
.
0
1
)
(
.
,
)
(
,
25
.
1
n
n
n
n
n
n
z
z
z
z
z
X
z
n
x
z
的幂级数形式展成左边序列若
>
≤
=
∴
0
,
0
0
,
)
8
.
0
(
)
(
n
n
n
x
n
)
(
),
1
log(
)
(
:
2
1
n
x
a
z
az
z
X
求例
>
+
=
∑
∞
=
+
=
+
1
1
1
)
1
(
)
1
log(
n
n
n
n
n
z
a
az
≤
≥
=
∴
+
0
,
0
1
,
)
1
(
)
(
1
n
n
n
a
n
x
n
n
51
a
z
z
az
1
1
1
.
2
已知部分分式展开
=
<
=
>
)
1
(
)
(
,
)
(
)
(
,
n
u
a
n
x
a
z
n
u
a
n
x
a
z
n
n
当当
)
(
n
x
或利用查表求相应的
)
(
,
3
2
,
6
5
)
(
)
(
,
1
,
)
1
)(
1
(
1
)
(
.
3
2
1
1
n
x
z
z
z
z
z
X
n
x
z
z
e
z
z
X
T
求求已知例
<
<
+
=
>
=
T
T
T
e
A
e
A
z
e
A
z
A
z
X
=
=
+
=
1
1
,
1
1
,
1
1
)
(
)
1
(
:
2
1
1
2
1
1
解
52
1
,
1
,
3
2
3
2
,
6
5
)
(
)
1
(
)
(
)
(
1
1
)
(
1
1
)
(
2
=
=
+
+
=
<
<
+
=
+
=
∴
B
A
z
Bz
z
Az
z
z
z
z
z
X
n
u
e
e
n
u
e
n
x
n
T
T
T
[]
)
1
(
)
3
(
)
(
2
)
1
(
)
3
(
)
(
2
)
(
3
2
)
(
+
=
=
∴
+
=
∴
n
u
n
u
n
u
n
u
n
x
z
z
z
z
z
X
n
n
n
n
<
>
=
=
0
,
)
3
(
0
,
2
0
,
1
n
n
n
n
n
53
5
,
5
6
9
)
(
),
(
.
4
2
2
>
+
=
z
z
z
z
z
z
X
n
x
求例
)
(
5
)
(
2
)
(
5
1
2
5
1
1
2
5
6
9
)
(
2
n
u
n
u
n
x
z
z
z
z
z
z
z
z
z
z
z
z
X
n
=
∴
=
=
+
=
54
2
/
1
,
4
/
3
,
4
/
1
)
1
(
1
1
)
1
)(
1
(
)
(
)
1
)(
1
(
)
(
3
2
1
2
3
2
1
2
2
2
3
=
=
=
+
+
+
=
+
=
+
=
A
A
A
z
A
z
A
z
A
z
z
z
z
z
X
z
z
z
z
X
1
)
(
.
21
)
(
.
43
)
(
.
)
1
(
41
)
(
)
1
(
.
21
1
.
43
1
.
41
)
(
2
>
+
+
=
∴
+
+
+
=
∴
z
n
nu
n
u
n
u
n
x
z
z
z
z
z
z
z
X
n
)
(
)
1
)(
1
(
1
)
(
.
5
2
1
1
n
x
z
z
z
X
相应的因果序列求例
+
=
55
{}
{
}
[]
[
]
[]
[]
).
(
).
(
).
(
).
(
,
)
(
Re
,
)
(
Re
)
(
:
,
)
(
,
.
3
1
1
1
1
k
k
b
z
n
k
a
z
n
k
k
k
n
k
k
n
k
k
z
z
X
b
z
z
z
X
a
z
b
z
z
X
s
a
z
z
X
s
n
x
c
z
X
b
a
=
=
=
=
∑
∑
据柯西留数定理可得与外部的两组极点内部在其收敛域上围线分别是设留数计算法
[]
)
(
.
).
(
,
Re
,
).
(
Re
)
(
.
0
,
,
,
)
(
,
1
1
)
(
:
.
,
)
(
1
1
n
u
a
a
z
z
a
z
a
a
z
z
s
a
z
z
X
s
n
x
n
c
a
a
z
z
z
X
a
z
az
z
X
n
a
z
n
n
n
=
=
=
=
∴
>
=
>
=
=
内在有一个极点例一般不常用留数法计算较复杂
56
)
1
(
.
)
(
.
,
0
,
,
=
<
<
n
u
a
n
x
n
c
a
z
n
非因果左边序列外极点在四、
z
变换与
Laplas
变换、
Fourier
变换的关系
∑∑
∫
∫
∞
∞
=
∞
∞
=
∞
∞
∞
∞
=
=
=
n
snT
n
st
st
s
e
nT
x
dt
e
nT
t
nT
x
dt
e
t
x
s
X
)
(
)
(
)
(
.
)
(
)
(
*
δ
57
)
(
)
(
nT
x
n
x
=
记
.
:
)
(
)
(
*
:
平面的映射变换得到平面到复变量复变量氏变换通过变换可由取样信号的拉序列的即由上式可看出
z
s
z
z
X
s
X
st
e
z
=
=
z
T
s
e
z
sT
ln
1
,
=
=
或
>
>
<
<
=
=
)
(
1
,
0
)
(
1
,
0
)
(
1
,
0
,
对应圆外对应圆内对应单位圆当讨论
zzz
σσσ
)
(
z
R
e
)
(
z
jI
m
1
=
z
j
s
σ
T
e
r
e
re
j
s
re
z
T
T
j
j
j
=
=
∴
=
+
=
=
+
ω
σ
σ
σ
ω
ω
,
,
,
)
(
则令
58
2
/
2
/
:
/
/
:
s
s
T
T
T
z
≤
≤
≤
≤
∴
≤
=
≤
即平面的相位的变化而对
π
π
π
ω
π
S
平面上相继宽度为的各子带都映射为同一
z
平面
s
ω
ω
ω
j
e
z
j
j
z
X
e
X
e
X
z
X
=
=
)
(
)
(
)
(
)
(
.
2
的关系与
59
五、系统函数
1
、定义
∑
∞
∞
=
=
n
n
z
n
h
z
H
z
n
h )
(
)
(
:
)
(
变换的单位取样响应
2
、
H(z)
的收敛域与系统稳定性的关系
1
)
(
=
z
z
H
的收敛域包括单位圆为定的充要条件对线性非移变系统其稳
60
定性讨论并判断该系统的稳某线性非移变系统例
),
(
)
1
(
)
(
:
1
n
x
n
ay
n
y
+
=
1
1
1
1
)
(
)
(
)
(
)
(
:
=
∴
+
=
az
z
H
z
X
z
Y
az
z
Y
z
变换对两边作
1
,
)
1
(
)
(
,
2
.
,
1
)
(
)
(
:
1
>
=
<
<
∴
=
>
a
n
u
a
n
h
a
z
a
n
u
a
n
h
a
z
n
n
要使系统稳定若系统是非因果的系统才是稳定的时只有当则其收敛域为若系统为因果系统讨论
61
)
(
)
(
,
1
)
(
)
(
)
(
)
(
.
,
1
0
)
(
.
)
(
1
1
)
(
.
.
2
1
1
1
n
h
z
H
z
H
z
H
dc
a
b
a
a
az
z
a
z
H
稳定时对应的求令系统证明该系统是一个全通画出零极点图及收敛域若的范围求系统稳定时系统函数的线性非移变因果研究一个具有下列系统例
=
<
<
=
零极点图及收敛域要使系统稳定收敛域为代表一个因果系统解
)
(
1
.
)
(
1
1
)
(
)
(
:
1
1
1
1
b
a
a
z
z
H
a
z
a
z
az
z
a
z
H
a
<
∴
>
∴
=
=
Q
)
(
z
jI
m
)
(
z
R
e
1
a1
×
a
z
=
62
ω
ω
ω
ω
ω
ω
ω
ω
sin
cos
sin
1
cos
1
)
(
)
(
)
(
j
a
j
a
a
e
a
e
z
H
e
H
c
j
j
e
z
j
j
+
+
=
=
=
=
[]
)
1
(
)
(
)
(
),
(
)
(
.
)
(
)
1
(
)
(
,
)
(
)
(
1
,
1
1
,
1
0
.
)
(
)
(
,
1
)
(
).
(
)
(
2
2
1
1
1
1
1
1
1
1
1
1
1
=
∴
=
=
=
∴
<
→
<
∴
>
<
<
=
∴
=
n
u
a
n
u
a
n
h
n
u
a
n
u
a
a
a
z
z
az
a
z
a
n
u
a
a
z
z
a
z
a
a
z
z
z
H
n
h
a
z
a
z
a
a
z
H
a
z
a
z
z
H
z
H
z
H
d
n
n
a
n
n
Q
Q
Q
Q
为左向序列又稳定收敛域包含单位圆
a
aa
e
H
j
1
sin
)
(cos
sin
)
1
(cos
)
(
2
2
2
2
=
+
+
=
∴
ω
ω
ω
ω
ω
63
[]
)
1
(
)
(
)
(
),
(
)
(
.
)
(
)
1
(
)
(
,
)
(
)
(
1
,
1
1
,
1
0
.
)
(
)
(
,
1
)
(
).
(
)
(
2
2
1
1
1
1
1
1
1
1
1
1
1
=
∴
=
=
=
∴
<
→
<
∴
>
<
<
=
∴
=
n
u
a
n
u
a
n
h
n
u
a
n
u
a
a
a
z
z
az
a
z
a
n
u
a
a
z
z
a
z
a
a
z
z
z
H
n
h
a
z
a
z
a
a
z
H
a
z
a
z
z
H
z
H
z
H
d
n
n
a
n
n
Q
Q
Q
Q
为左向序列又稳定收敛域包含单位圆
64
[]
[
]
∑
∞
<
<
=
=
→
→
→
→
.
)
(
,
)
(
:
0
,
0
)
(
:
)
(
)
(
),
(
)
(
:
:
2
)
(
)
(
)
(
)
(
.
1
:
收敛域包括单位圆稳定因果非移变满足叠加原理线性线性非移变系统总结
z
H
n
h
n
n
h
k
n
y
k
n
x
T
n
y
n
x
T
z
H
e
H
n
h
n
j
ω
δ
65
sT
e
z
s
z
z
zz
=
平面对应关系平面零极点图变换即傅立叶变换单位圆上的反变换双边序列左向序列右向序列有限序列变换收敛域
.
.
6
.
5
.
4
.
3