1
第十八章 ARCH和 GARCH估计
EViews中的大多数统计工具都是用来建立随机变量的条件均值模
型 。 本章讨论的重要工具具有与以往不同的目的 ——建立变量的条件
方差或变量波动性模型 。
我们想要建模并预测其变动性通常有如下几个原因, 首先, 我们
可能要分析持有某项资产的风险;其次, 预测置信区间可能是时变性
的, 所以可以通过建立残差方差模型得到更精确的区间;第三, 如果
误差的异方差是能适当控制的, 我们就能得到更有效的估计 。
2
自 回归条 件异 方差 (Autoregressive Conditional Heteroscedasticity
Model,ARCH)模型是特别用来建立条件方差模型并对其进行预测的 。
因变量的方差被作为因变量的滞后值和自变量或外生变量的函数来建立
模型 。
ARCH模型是 1982年由恩格尔 (Engle,R,)提出,并由博勒斯莱文
(Bollerslev,T.,1986)发展成为 GARCH (Generalized ARCH)——广义自回
归条件异方差。这些模型被广泛的应用于经济学的各个领域。尤其在金
融时间序列分析中。
按照通常的想法, 自相关的问题是时间序列数据所特有, 而异方差
性是横截面数据的特点 。 但在时间序列数据中, 会不会出现异方差呢?
会是怎样出现的?
3
恩格尔和克拉格 ( Kraft,D.,1983) 在分析宏观数据时, 发现这样一
些现象:时间序列模型中的扰动方差稳定性比通常假设的要差 。 恩格尔
的结论说明在分析通货膨胀模型时, 大的及小的预测误差会大量出现,
表明存在一种异方差, 其中预测误差的方差取决于后续扰动项的大小 。
从事于股票价格, 通货膨胀率, 外汇汇率等金融时间序列预测的研
究工作者, 曾发现他们对这些变量的预测能力随时期的不同而有相当大
的变化 。 预测的误差在某一时期里相对地小, 而在某一时期里则相对地
大, 然后, 在另一时期又是较小的 。 这种变异很可能由于金融市场的波
动性易受谣言, 政局变动, 政府货币与财政政策变化等等的影响 。 从而
说明预测误差的方差中有某种相关性 。
为了刻画这种相关性, 恩格尔提出自回归条件异方差 ( ARCH) 模型 。
ARCH的主要思想是时刻 t 的 的方差 ( = ) 依赖于时刻 (t-1)的平方误
差的大小, 即依赖于 。
tu 2t?
21?tu
4
为了说得更具体, 让我们回到 k -变量回归模型,
(1)
并假设在时刻 ( t-1 ) 所有信息已知的条件下, 扰动项 的分布是,
~ (2)
也就是, 遵循以 0为均值, 为方差的正态分布 。
由于 ( 2) 中 的方差依赖于前期的平方扰动项, 我们称它为 ARCH(1)
过程,
然而, 容易加以推广 。
ttkktt uxxy ????? ??? ??110
tu
? ?)(,0 2 110 ?? tuN ??
)( 2 110 ?? tu??
tu
tu
2 1102)v a r ( ???? ttt uu ???
tu
5
例如, 一个 ARCH (p)过程可以写为,
( 3)
如果扰动项方差中没有自相关, 就会有 H 0, 。
这时, 从而得到误差方差的同方差性情形 。
恩格尔曾表明, 容易通过以下的回归去检验上述虚拟假设,
( 4)
其中,表示从原始回归模型( 1)估计得到的 OLS残差。
22 222 1102 ???????? ptpttt uuuu ??? ????? ???? ??
tu?
22 222 1102 ptpttt uuu ??? ????? ????? ??
021 ???? p??? ?
02)v a r ( ?? ??tu
6
一, GARCH(1,1)模型
我们常常有理由认为 ut 的方差依赖于很多时刻之前的变化量 ( 特别是
在金融领域, 采用日数据或周数据的应用更是如此 ) 。 这里的问题在于,
我们必须估计很多参数, 而这一点很难精确的做到 。 但是如果我们能够意
识到方程 (3)不过是 ?t2 的分布滞后模型, 我们就能够用一个或两个 ?t2的
滞后值代替许多 ut2的滞后值, 这就是广义自回归条件异方差模型
( generalized autoregressive conditional heteroscedasticity model,简记为
GARCH模型 ) 。 在广义的 ARCH模型中, 要考虑两个不同的设定:一个是
条件均值, 另一个是条件方差 。
在标准化的 GARCH(1,1)模型中,
(18.1)
(18.2)
(18.1)中给出的 均值 方程是一个带有误差项的外生变量函数 。 由于 是以
前面信息为基础的一期向前预测方差, 所以它被叫做条件方差 。
2 12 12 ?? ??? ttt u ?????
2t?
ttt uxy ??? ?
7
(18.2)中给出的条件方差方程是下面三项的函数,
1,均值,
2,用方程 (18.1)的残差平方的滞后来度量从前期得到的波动性的信
息,( ARCH项 ) 。
3.上一期的预测方差,( GARCH项)。
GARCH (1,1) 中的 (1,1)是指阶数为 1的 GARCH项 ( 括号中的第一项 )
和阶数为 1的 ARCH项 ( 括号中的第二项 ) 。 一个普通的 ARCH模型是
GARCH模型的一个特例, 即在条件方差方程中不存在滞后预测方差的说
明 。
?
21?tu
21?t?
8
在 EViews中 ARCH模型是在误差是条件正态分布的假定下, 通过极
大似然函数方法估计的 。 例如, 对于 GARCH (1,1),t 时期的对数似然
函数为,
(18.3)
其中
(18.4)
这个说明通常可以在金融领域得到解释, 因为代理商或贸易商可以
通过建立长期均值的加权平均 ( 常数 ), 上期的预期方差 ( GARCH项 )
和在以前各期中观测到的关于变动性的信息 ( ARCH项 ) 来预测本期的
方差 。 如果 上升或下降的资产收益出乎意料地大, 那么贸易商将会增加
对下期方差的预期 。 这个模型还包括了经常可以在财务收益数据中看到
的变动组, 在这些数据中, 收益的巨大变化可能伴随着更进一步的巨大
变化 。
222 /)(
2
1l o g
2
1)2l o g (
2
1
ttttt xyl ???? ??????
2 12 12 12112 )( ????? ???????? tttttt uxy ??????????
9
有两个可供选择的方差方程的描述可以帮助解释这个模型,
1,如果我们用滞后方差递归地替代 ( 18.2) 式的右端, 就可以将条
件方差表示为滞后残差平方的加权平均,
( 18.5)
我们看到 GARCH(1,1)方差说明与样本方差类似, 但是, 它向更远的
滞后加权了平方误差 。
? ?,1 21 12 jtj jt u ?
?
?
???
?? ???
??
10
2,收益平方中的误差通过 给出 。 用其替代方差方程
( 18.2) 中的方差并整理, 得到关于误差的模型,
( 18.6)
因此,平方误差服从一个异方差 ARMA( 1,1)过程。决定波动冲击持久
性的自回归的根是 加 的和。在很多情况下,这个根非常接近 1,所以
冲击会逐渐减弱。
22 ttt u ?? ??
? ?,12 12 ?? ????? tttt uu ??????
? ?
11
二, 方差方程的回归因子
方程 ( 18.2) 可以扩展成包含外生的或前定回归因子 的方差方
程,
( 18.7)
注意到从这个模型中得到的预测方差不能保证是正的 。 可以引
入到这样一些形式的回归算子, 它们总是正的, 从而将产生负的预
测值的可能性降到最小 。 例如, 我们可以要求,
( 18.8)
z
tttt zu ?????? ???? ?? 2 12 12
tt xz ?
12
三, GARCH( p,q) 模型
高阶 GARCH模型可以通过选择大于 1的 p 或 q得到估计, 记作
GARCH(p,q)。 其方差表示为,
( 18.9)
这里,p是 GARCH项的阶数,q是 ARCH项的阶数。
2
.
1
2
1
2
jt
p
j
jit
q
i
it u ?
?
?
?
?? ??? ?????
13
四, ARCH-M模型
方程 ( 18.1) 中的 代表在均值方程中引入的外生或先决变量 。 如果我们
把条件方差引进到均值方程中, 就可以得到 ARCH-M模型 (ARCH-in-Mean,
Engle,Lilien,Robins,1987),
( 18.10)
ARCH-M模型的另一种不同形式是将条件方差换成条件标准差,
ARCH-M模型通常用于关于资产的预期收益与预期风险紧密相关的金融领
域 。 预期风险的估计系数是风险收益交易的度量 。 例如, 我们可以认为某股票
指数, 如上证的股票指数的票面收益 ( returet) 依赖于一个常数项, 通货膨胀
率以及条件方差,
这种类型的模型(其中期望风险用条件方差表示)就称为 ARCH-M模型。
tttt uxy ???? 2???
x
tttt uxy ???? ???
22 1122 112 qtqtptptt uu ???? ??????? ???????? ??
tttt ur e t u r e ???? 221 ?????
14
§ 18.2 在 EViews中 估计 ARCH模型
估计 GARCH和 ARCH模型,首先选择 Quick/Estimate Equation或 Object/New
Object/Equation,然后在 Method的下拉菜单中选择 ARCH,得到如下的对话框。
15
与选择估计方法和样本一样,需要指定均值方程和方差方程。
一, 均值方程
在因变量编辑栏中输入均值方程形式, 均值方程的形式可以用回归列表
形式列出因变量及解释变量 。 如果方程包含常数, 可在列表中加入 C。 如果
需要一个更复杂的均值方程, 可以用公式的形式输入均值方程 。 如果解释变
量的表达式中含有 ARCH—M项, 就需要点击对话框右上方对应的按钮 。
二, 方差方程
在 Variance Regressors栏中, 可以选择列出所要包含在指定方差中的变量 。
注意到 EViews在进行方差回归时总会包含一个常数项作为回归量, 所以不必
在变量表中列出 c。
16
三, ARCH说明
在 ARCH Specification 标题栏下, 选择 ARCH项和 GARCH项的阶数 。
EViews默认为选择 1阶 ARCH和 1阶 GARCH进行估计, 这是目前最普遍的形式 。
要估计如上所述的标准 GARCH模型, 需点击 GARCH按钮 。 其余的按钮将
进入更复杂的 GARCH模型的变形形式 。 我们将在本章的后一部分进行讨论 。
四, 估计选项
EViews为我们提供了可以进入许多估计方法的设置 。 只要点击 Options按钮
并按要求填写对话即可 。
1,回推 (Backcasting)
在缺省的情况下,MA初始的扰动项和 GARCH项中要求的初始预测方差都
是用回推方法来确定初始值的。
17
在计算 GARCH初始回推方差时, EViews首先用系数值来计算均值方程中
的残差, 然后计算初始值的指数平滑算子 。
( 18.11)
在这里, 是均值方程的残差, 是无条件方差估计,
( 18.12)
平滑参数 。 同样地, 可以选择无条件方差来初始化 GARCH过程,
( 18.13)
如果不选择回推算法, EViews会设置残差为零来初始化 MA过程, 用
( 18.13) 的无条件方差来设置初始化的方差和残差值 。
但是经验告诉我们,使用 回 推指数平滑算法通常比使用无条件方差来初始
化 GARCH模型的效果要理想。
)?()1(???
1
0
2122
0
2
0 ?
?
?
?
??????
T
j
jT
jTT uu ?????
u? 2??
?
?
?
T
t
t Tu
1
22 ???
7.0??
22020 ??? ?? u
18
2,系数协方差 (Coefficient Covariance)
点击 Heteroskedasticity Consistent Covariances用 Bollerslev和 Wooldridge
( 1992) 的方法计算极大似然 ( QML) 协方差和标准误差 。
如果怀疑残差不服从条件正态分布, 就应该使用这个选项 。 只有选定这
一选项, 协方差的估计才可能是一致的, 才可能产生正确的标准差 。
注意如果选择该项, 参数估计将是不变的, 改变的只是协方差矩阵 。
3,导数方法 (Derivatives)
EViews现在用数值导数方法来估计 ARCH模型 。 在计算导数的时候, 可
以控制这种方法达到更快的速度 ( 较少的函数计算 ) 或者更高的精确性 ( 较
多的函数计算 ) 。
4,迭代估计控制 (Iterative process)
当用默认的设置进行估计不收敛时, 可以通过改变初值, 增加迭代的最
大次数或者调整收敛准则来进行迭代控制 。
5,算法选择 (Optimization algorithm)
ARCH模型的似然函数不总是正规的,所以这时可以利用选择迭代算法
( Marquardt,BHHH/高斯 -牛顿)使其达到收敛。
19
§ 18.3 ARCH的估计结果
在均值方程中和方差方程中估计含有解释变量的标准 GARCH(1,1)模
型,
(18.14)
例 1 为了检验股票价格指数的波动是否具有条件异方差性, 我们选择
了沪市股票的收盘价格指数的日数据作为样本序列, 这是因为上海股票
市场不仅开市早, 市值高, 对于各种冲击的反应较为敏感, 因此, 本例
所分析的沪市股票价格波动具有一定代表性 。 在这个例子中, 我们选择
的样本序列 {sp}是 1998年 1月 3日至 2001年 12月 31日的上海证券交易所每日
股票价格收盘指数, 为了减少舍入误差, 在估计时, 对 {sp}进行自然对数
处理, 即将序列 {log(sp)}作为因变量进行估计 。 ( 18-SP文件中 eq1方程 )
ttt uxcy ???? ?
2 12 12 ?? ??? ttt u ?????
20
由于股票价格指数序列常常用一种特殊的单位根过程 ——随机游动
( Random Walk) 模型描述, 所以本例进行估计的基本形式为,
首先利用最小二乘法, 估计了一个普通的回归方程, 结果如下,
( 15531)
R2= 0.994 对数似然值 = 2874 AIC = -5.51 SC = -5.51
可以看出, 这个方程的统计量很显著, 而且, 拟和的程度也很好 。 但是
观察图 1,该回归方程的残差, 我们可以注意到波动的, 成群, 现象:波动
在一些较长的时间内非常小 ( 例如 2000年 ), 在其他一些较长的时间内非常
大 ( 例如 1999年 ), 这说明误差项具有条件异方差性 。 对这个方程进行异方
差的 White和 ARCH LM检验, 发现 q = 3 时的 ARCH-LM检验的相伴概率, 即
P值接近于 0,White检验的结果类似, 其相伴概率, 即 P值也接近于 0,这说
明残差序列存在高阶 ARCH效应 。
ttt uspsp ??? ? )lo g ()lo g ( 1?
)lo g (0 0 0 0 2 7.1)?lo g ( 1??? tt spps
21 股票价格指数方程回归残差
22
重新建立序列的 GARCH( 1,1)模型,结果如下( 18-SP文件中 GARCH11
方程),
均值方程,
( 23213)
方差方程,
( 5.28) ( 11.44) ( 33.36)
对数似然值 = 3006 AIC = -5.76 SC = -5.74
方差方程中的 ARCH项和 GARCH项的系数都是统计显著的,并且对数似
然值有所增加,同时 AIC和 SC值都变小了,这说明这个模型能够更好的拟和数
据。再对这个方程进行异方差的 ARCH—LM检验,相伴概率为 P = 0.924,说
明利用 GARCH模型消除了原残差序列的异方差效应。 ARCH和 GARCH的系数
之和等于 0.982,小于 1,满足参数约束条件。由于系数之和非常接近于 1,表
明一个条件方差所受的冲击是持久的,即它对所有的未来预测都有重要作用,
这个结果在高频率的金融数据中经常可以看到。
)lo g (0 0 0 0 3 1.1)?lo g ( 1??? tt spps
2 12 152 ?732.0?250.0102.1? ??? ?????? ttt u ??
23
24
ARCH估计的结果可以分为两部分:上半部分提供了均值方程的
标准结果;下半部分, 即方差方程包括系数, 标准误差, z—统计量和
方差方程系数的 P值 。 在方程 (18.2)中 ARCH的参数对应于, GARCH
的参数对应于 。 在表的底部是一组标准的回归统计量, 使用的残差
来自于均值方程 。
注意如果在均值方程中不存在回归量, 那么这些标准, 例如 也
就没有意义了 。 例如, 方程 ARCH0中 是负值 。
?
?
2R
2R
25
例 2 估计我国股票收益率的 GARCH—M模型 。 选择的时间序列仍是 1998
年 1月 3日至 2001年 12月 31日的上海证券交易所每日股票价格收盘指数 {sp},股
票的收益率是根据公式:, 即股票价格收盘指数对数的差
分计算出来的, 估计出的结果是, (18-SP文件中 ARCH-M)
(-2.72) (2.96)
(5.43) (12.45) (29.78)
对数似然值 = 3010 AIC = -5.77 SC = -5.74
在收益率方程中包括 ?t 的原因是为了在收益率的生成过程中融入风险测
量,这是许多资产定价理论模型的基础 ——,均值方程假设” 的含义。在这
个假设下,? 应该是正数,结果 ? = 0.26,因此我们预期较大值的条件标准
差与高收益率相联系。估计出的方程的所有系数都很显著。并且系数之和小于
1,满足平稳条件。均值方程中 ?t的系数为 0.26,表明当市场中的预期风险增
加一个百分点时,就会导致收益率也相应的增加 0.26个百分点。
)/lo g ( 1?? ttt spspre
tter ??26.00 0 3.0? ????
2 12 152 ?68.0?29.01058.1? ??? ???? ttt u ??
26
27
§ 18.4 ARCH模型的视图与过程
一旦模型被估计出来, EViews会提供各种视图和过程进行推理和
诊断检验 。
一, ARCH模型的视图
1,Actual,Fitted,Residual 窗口列示了各种残差形式, 例如, 表
格, 图形和标准残差 。
2,条件 SD图
显示了在样本中对每个观测值绘制向前一步的标准偏差 。 t 时
期的观察值是由 t-1期可得到的信息得出的预测值 。
t?
28
3,协方差矩阵
显示了估计的系数协方差矩阵 。 大多数 ARCH模型 ( ARCH—M模
型除外 ) 的矩阵都是分块对角的, 因此均值系数和方差系数之间的协
方差就十分接近零 。 如果在均值方程中包含常数, 那么在协方差矩阵
中就存在两个 C;第一个 C是均值方程的常数, 第二个 C是方差方程的
常数 。
4,系数检验
对估计出的系数进行标准假设检验 。 注意到在结果的拟极大似然
解释下, 似然比值检验是不恰当的 。
29
5,残差检验 /相关图 — Q— 统计量
显示了标准残差的相关图 ( 自相关和偏自相关 ) 。 这个窗口可以
用于检验均值方程中的剩余的序列相关性和检查均值方程的设定 。 如
果均值方程是被正确设定的, 那么所有的 Q—统计量都不显著 。
6,残差检验 /残差平方相关图
显示了标准残差平方的相关图(自相关和偏自相关)。这个窗口
可以用于检验方差方程中剩余的 ARCH项和检查方差方程的指定。如
果方差方程是被正确指定的,那么所有的 Q—统计量都不显著。
30
7,残差检验 /直方图 — 正态检验
显示了描述统计量和标准残差的直方图。可以用 JB统计量检验标
准残差是否服从正态分布。如果标准残差服从正态分布,那么 JB统计
量就不是显著的。例如,GARCH(1,1)模型的标准残差的直方图如下,
JB统计量拒绝正态分布的假设。
31
8,残差检验 /ARCH LM拉格朗日乘子检验
通过拉格朗日乘子检验来检验标准残差中是否显示了额外的 ARCH项 。
如果正确设定方差方程, 那么在标准残差中就不存在 ARCH项 。
二, ARCH模型的方法
1,构造残差序列
将残差以序列的名义保存在工作文件中, 可以选择保存普通残差 或
标准残差 。 残差将被命名为 RESID01,RESID02等等 。 可以点击序
列窗口中的 name按钮来重新命名序列残差 。
2,构造 GARCH方差序列
将条件方差 以序列的名义保存在工作文件中。条件方差序列可以
被命名为 GARCH1,GARCH2等等。取平方根得到如 View/Conditional SD
Gragh所示的条件标准偏差。
tu
ttu ?
2t?
32
3,预测
例 3 假设我们估计出了如下的 ARCH(1) (采用 Marquardt方法 )模型,
(ARCH3方程,留下 2001年 10月 —2001年 12月的 3个月做检验性数据 )
33
使用估计的 ARCH模型可以计算因变量的静态的和动态的预测值,和它
的预测标准误差和条件方差。为了在工作文件中保存预测值,要在相应的
对话栏中输入名字。如果选择了 Do gragh选项 EViews就会显示预测值图和两
个标准偏差的带状图。
34
估计期间是 1/03/1998- 9/28/2001,预测期间是 10/02/2001 - 12/31/2001
左图表示了由均值方程和 SP的预测值的两个标准偏差带。
35
36
4,补充说明
上面描述的几种检验结果都是根据标准残差 计算得出的, 标准残差
被定义为传统的均值方程中的残差除以条件标准差 。
如果正确设定模型, 标准残差应该是独立同分布的随机变量, 并且均值
为 0,方差为 1。 如果标准方差还服从正态分布, 那么估计值就是渐进有效的
极大似然估计 。 然而, 即使残差的分布不是正态的, 估计值在准极大似然
(QML)的假设下仍是一致的 。
为了用 QLM计算有效的推论, 当然应该使用 Heteroskedasticity Consistent
Covariance选项估计标准误差 。
ttu ?
ttu ?
37
§ 18.5 非对称 ARCH模型
对于资产而言,在市场中我们经常可以看到向下运动通常伴随着比同等程
度的向上运动更强烈的波动性。为了解释这一现象,Engle( 1993)描述了如下
形式的对好消息和坏消息的非对称信息曲线,
波动性
0 信息
EViews估计了两个考虑了波动性的非对称冲击的模型,TARCH和 EGARCH。
38
§ 18.5.1 TARCH模型
TARCH或者门限 ( Threshold) ARCH模型由 Zakoian(1990)和 Glosten,
Jafanathan,Runkle(1993)独立的引入 。 条件方差指定为,
(18.16)
其中, 当 时, ;否则, 。
在这个模型中, 好消息 和坏消息 对条件方差有不同的
影响:好消息有一个 的冲击;坏消息有一个对 的冲击 。 如果,
则信息是非对称的, 如果, 我们说存在杠杆效应, 非对称效应的主要
效果是使得波动加大;如果, 则非对称效应的作用是使得波动减小 。
许多研究人员发现了股票价格行为的非对称的实例 负的冲击似乎比正
的冲击更容易增加波动 。 因为较低的股价减少了相对公司债务的股东权益,
股价的大幅下降增加了公司的杠杆作用从而提高了持有股票的风险 。
估计 TARCH模型, 要以一般形式指定 ARCH模型, 但是应该点击 ARCH
Specification目录下的 TARCH(asymmetric)按钮, 而不是选择 GARCH选项 。
2 112 12 12 ???? ???? ttttt duu ??????
1?td 0?td
? ?0?tu ? ?0?tu
? ??? 0??
0?tu
0??
0??
39
例 4 由于货币政策及其它政策的实施力度以及时滞导致经济中出现了
不同于货币政策开始实施阶段的条件因素,导致货币政策发生作用的环境
发生了变化,此时,货币政策在产生一般的紧缩或者是扩张的政策效应基
础上,还会产生一种特殊的效应,我们称之为“非对称”效应。表现在经
济中,就是使得某些经济变量的波动加大或者变小。
建立了通货膨胀率 (?t)的 TARCH模型。采用居民消费物价指数( CPI,
上年同期 =100)减去 100代表通货膨胀率 ?t,货币政策变量选用狭义货币供
应量 M1的增长率 (M1R t)、银行同业拆借利率( 7天) (R7t),模型中解释变量
还包括货币流通速度 (Vt)( Vt = GDPt / M1t)、通货膨胀率的 1期滞后 (?t-1)。
使用银行同业拆借利率代替存款利率,是由于目前我国基本上是一个利率
管制国家,中央银行对利率直接调控,因此名义存款利率不能够反映市场
上货币供需的真实情况( 18-CPI文件中方程 CPI1)。
40
41
由 TARCH模型的回归方程和方差方程得到的估计结果为,
(-2.62) (25.53) (5.068) (-3.4) (1.64)
(1.152) (0.94) (-3.08) (3.9)
R 2 = 0.96 D.W.= 1.83
结果表中的 (RESID)*ARCH(1)项是 (18.16)式的 ?, 也称为 TARCH
项。 在上式中,TARCH项的系数显著不为零,说明货币政策的变动对
物价具有非对称效应。需要注意,方差方程中 ? = -0.399, 即 非对称
项的系数是负的。这就说明,货币政策对于通货膨胀率的非对称影响是
使得物价的波动越来越小。
1221 048.422.01089.097.038.2? ???? ?????????? ttttt VRRM??
2 112 12 12 ?956.0?399.0?24.0037.0? ???? ??????? ttttt duu ??
42
观察残差图,还可以发现货币政策的非对称作用在不同阶段对通货膨胀
率表现是不同的:在经济过热时期,如 1992年~ 1994年期间,通过均值方程
中货币政策变量的紧缩作用,导致了货币政策对通货膨胀的减速作用非常明
显,但是由于通货膨胀率方程的残差非常大,由方差方程可知这一时期物价
波动很大,但,则 dt-1= 0,所以 TARCH项不存在,即不存在非对称
效应。 1995年~ 1996年初,则 TARCH项存在,且其系数 ? 是负值,
于是非对称效应使得物价的波动迅速减小。当处于经济增长的下滑阶段,它
的残差只在零上下波动,虽然出现负值比较多,但这一时期的货币政策非对
称扩张作用非常小。
0? ?tu
0? ?tu
43
对于高阶 TARCH模型的制定, EViews将其估计为,
(18.17)
2
1
1
2
1
2
1
2
jt
p
j
jttit
q
i
it duu ?
?
???
?
?? ???? ??????
§ 18.5.2 EGARCH模型
EGARCH或指数 ( Exponential) GARCH模型由纳尔什 ( Nelson,1991)
提出 。 条件方差被指定为,
(18.18)
等式左边是条件方差的对数,这意味着杠杆影响是指数的,而不是二次的,
所以条件方差的预测值一定是非负的。 杠杆效应的存在能够通过 的假设
得到检验。如果,则冲击的影响存在着非对称性 。
? ? ? ?
1
1
1
12
1
2 l o gl o g
?
?
?
?
? ????
t
t
t
t
tt
uu
????????
0??
0??
44
EViews指定的 EGARCH模型和一般的 Nelson模型之间有两点区别 。 首先,
Nelson假设 ut 服从广义误差分布, 而 EViews假设扰动项服从正态分布;其次,
Nelson指定的条件方差的对数与上述的不同,
(18.19)
在正态误差的假设下估计这个模型将产生与 EViews得出的那些结论恒等的
估计结果, 除了截矩项, 它只差了 。
EViews指定了更高阶的 EGARCH模型,
(18.20)
估计 EGARCH模型只要选择 ARCH指定设置下的 EGARCH项即可。
? ? ? ?
1
1
1
12
1
2 2l o gl o g
?
?
?
?
? ?????
t
t
t
t
tt
uu
?????????
? ?? 2
? ? ? ? ??? ?
?
? 2
1
2 lo glo g
jt
p
j
jt ???? ?
? ?
?
?
?
???
?
???
?
??
q
i it
it
i
it
it
i
uu
1
2
?????
45
克里斯汀 (Christie,1982)的研究认为, 当股票价格下降时, 资本结构
当中附加在债务上的权重增加, 如果债务权重增加的消息泄漏以后, 资产
持有者和购买者就会产生未来资产收益率将导致更高波动性的预期, 从而
导致该资产的股票价格波动 。 因此, 对于股价反向冲击所产生的波动性,
大于等量正向冲击产生的波动性, 这种, 利空消息, 作用大于, 利好消息,
作用的非对称性, 在美国等国家的一些股价指数序列当中得到验证 。
例 5 那么在我国的股票市场运行过程当中,是否也存在股票价格波动
的非对称性呢?利用沪市的股票收盘价格指数数据,我们估计了股票价格
波动的两种非对称模型,结果分别如下,(18-SP文件中 TARCH1方程)
①, TARCH模型,
均值方程,
(19689.6)
方差方程,
(5.57) (7.58) (5.31) (45.43)
对数似然值 =3012.5 AIC = -5.77 SC = -5.75
)lo g (99.0)?lo g ( 1??? tt spps
2 12 12 162 ?789.0?150.0?127.01019.8? ???? ????????? ttttt udu ??
46
47
杠杆效应项由结果中的 (RESID<0)*ARCH(1)描述, 它是显著为正的,
所以存在非对称影响 。 在 TARCH模型中, 杠杆效应项的系数显著大于零,
说明股票价格的波动具有, 杠杆, 效应:利空消息能比等量的利好消息
产生更大的波动, 当出现, 利好消息, 时, 会对股票价格指数带来一个
0.127 倍的冲击, 而出现, 利 空消息, 时, 则会带来 一个 0.277
( 0.127+0.150) 倍的冲击 。
②, EGARCH模型,(18-SP文件中 EGARCH1)
均值方程,
(19897.8)
方差方程,
(-7.26) (9.63) (-5.63) (123.29)
对数似然值 =3020.3 AIC = -5.79 SC = -5.76
)lo g (99.0)?lo g ( 1??? tt spps
)?l o g (96.0)??(07.0??304.058.0)?l o g ( 2 111112 ????? ???????? tttttt uu ????
48
49
这个例子中,利空消息能比等量的利好消息产生更大的波动的结果在
EGARCH模型中也能够得到印证,在 EGARCH模型 (18.18)中,,
其非对称项 ? 的系数小于零,。
当 时,有一个 = 0.304+(- 0.07 )= 0.23倍冲击;
当 时,有一个 = 0.304+(- 0.07 ) *(-1) = 0.37倍冲击 。
在 EViews的 EGARCH模型结果显示中,| ut /?t|项的系数 ?记作 |RES|
/SQR[GARCH] (1), 杠杆效应项 ? 记作 RES/SQR[GARCH](1),? 是负的
并在统计上是显著的,这表明在样本期间 沪市的股票收盘价格指数 中存在
杠杆效应。
304.0? ??
0? ?tu
0? ?tu ?? ???
?? ???
07.0? ???
50
§ 18.5.3 绘制估计信息冲击曲线
为了更为具体地分析非对称性的效果, 可以画出依赖冲击的信息冲击曲
线 。 下面以 EGARCH模型的方差方程中的波动性 ? 2相对于反向冲击 u /? 为
例介绍一种使用 EViews来绘制信息影响曲线的方法 。
(18.21)

(18.22)
则 f (·) 称为“信息冲击曲线”,它将条件波动率的修正 (这里是由 log(?2)给出 )
与“冲击信息” ut-1联系起来。由于当 ut-1>0 时,?f /?u = ? +?,并且仅当
ut-1< 0 时,?f /?u = ? -?, f (·) 包含了非对称反应(注意,当没有 冲击信息,
即 ut-1= 0 时,波动率将会最小)。这种不对称性是十分有用,因为它允许
波动率对市场下跌的反应比对市场上升的反映更加迅速,这被称为“杠杆”
效应,是许多金融资产的一个重要特征事实。
? ? ? ?
1
1
1
12
1
2 l o gl o g
?
?
?
?
? ????
t
t
t
t
tt
uu
????????
1
1
1
1)/(
?
?
?
? ??
t
t
t
t
tt
uuuf
?????
51
例 6 设 z = u /?, 在工作文件 (18_SP)中估计沪市的股票收盘价格指
数数据的 EGARCH模型, 并以 EGARCH1的名字保存这个方程 。
首先, 通过选择 Procs/Make GARCH Variance Series 来产生条件方差
序列 ? 2。 其中 garch01是条件方差序列 ? 2的名字 。 通过选择 Procs/Make
Residual Series来产生残差序列 resid1。 利用 Genr窗口来计算 z = u /?,
z = resid1/sqr(garch01)
利用 EXCEL软件将 z 按由小到大排序, 然后重新建立含有 z 的非时间
序列工作文件 SIG,样本期间是 1~1041,利用 EGARCH1方程的系数 ?和 ?
通过以下的命令生成序列,
series log(s)=0.304* abs(z) - 0.07*z
其中 s是序列的名字。注意到 EViews会从对数表达式中自动生成序列 s 。
52
最后,选中 z 和 s 序列,先双击 Open group,然后双击 View/Graph/xy line。
下面是描述 EGARCH模型拟合 沪市的股票收盘价格指数数据 的信息冲击曲线。
53
§ 18.6 成分 ARCH模型 (Component ARCH Model)
GARCH (1,1) 模型将条件方差设定为,
令, 其中 是非条件方差或长期波动率, 过程变为,
(18.23)
表示了均值趋近于, 这个 在所有时期都为常数 。 相反的, 成分 ARCH
模型允许均值趋近于一个变动的水平,
(18.24)
? ? ? ???????? ????? ?? 2 12 12 ttt u
?
tq
? ? ? ?12 112 12 ???? ????? tttttt qquq ????
? ? ? ?2 12 11 ??? ????? tttt uqq ?????
2 12 12 ?? ??? ttt u ?????
)1( ???? ??? ?
?
54
此处 仍然是波动率,而 代替了,它是随时间变化的长期变动。
第一个等式描述了暂时分量,它将随 的作用收敛到零。第
二个等式描述了长期分量 它将在 的作用下收敛到 。典型的 在 0.99
和 1之间,所以 缓慢的接近 。我们把暂时方程和长期方程联合起来,
该方程表明了成分 ARCH模型是一个非线性的严格的 GARCH(2,2)模型。
t? tq
tt q?2? ???
tq ? ?
tq
(18.25)
? ?? ? ? ? ? ?? ? 2 22 12 11 ?? ????????? ttt uu ????????????
? ? ? ?? ? 2 22 1 ?? ????? tt ?????????
?
?
?
55
在成分 ARCH模型的条件方差方程中,可以包含进外生变量,它可以
在长期方程中,也可以在暂时方程中(或者两者均可)。暂时方程中的变
量将对变化率的短期移动产生影响,而长期方程中的变量将影响变动率的
长期水平。
在 方程对话框中的 Asymmetric Component选项把成分 ARCH模型和非
对称 TARCH模型结合在一起 。 这种方式在暂时方程中引入了非对称影响,
估计方程的形式为,
(18.26)
其中 z是外生变量, d是哑变量, 表示负的冲击 。 意味着条件方差
中的暂时杠杆效应 。
? ? ? ? ttttt
ttt
zuqq
uxy
11
2
1
2
11 ??????
?
??????
??
???
? ? ? ? ? ? tttttttttt zqdququq 2212 1112 112 12 ?????? ???????? ???????
0??
56
在 EViews中估计成分 ARCH模型
在 EViews中估计成分 ARCH模型, 选择方程指定对话框中的 Component
ARCH或 Asymmetric Component选项 。 为了在方差方程中包括进外生回归
变量, 要在 Variance Regressors栏内按以下顺序输入外生变量的名称:首先,
列出包含在长期方程中的外生变量名称, 接着输入 @ 标志, 然后, 列出包
含在暂时方程中的外生变量名称 。 例如, 要把变量 h 包括在长期方程中,
把 x,z 包括在暂时方程中, 输入,
h @ x z
仅把 x 包括在暂时方程中, 输入,
@ x
我们在前面的例子中已经估计了沪市的股票收盘价格指数的 GARCH模
型,但是方差方程被假定为均值不变的,在引入了 CGARCH模型后,重新
进行估计,得到的结果为,(18-SP文件中 CGARCH1方程)
57
例 7 CGARCH模型,
均值方程,
(21201)
方差方程,
(4.545) (9.22)
(0.86) (115.14) (4.00)
R2 = 0.994 对数似然值 = 3010 AIC = -5.77 SC = -5.74
在暂时成分方程中,?+? 之和为 0.826,小于 1,表示暂时成分 ?2- qt 将
收敛于零;而长期波动率 qt 则通过 ? 的作用,本例中 ? = 0.993,缓慢的收
敛于均值 0.0008。
)lo g (0 0 0 0 2 7.1)?lo g ( 1??? tt spps
)??(649.0)??(1769.0?? 12 112 12 ???? ????? tttttt qquq ??
)??(1427.0)0008.0?(993.00008.0? 2 12 11 ??? ??????? tttt uqq ?
58
59
用合成 ARCH模型拟合沪市的股票收盘价格指数的估计结果如下,
Perm:表示长期方程的系数; Tran:表示暂时方程的系数 。 其中长期
方程的系数为,
① Perm, C项 是非条件方差或长期波动率 ;
② Perm, [Q-C] 项 是 长期分量中的持续性的估计, 表明长
期分量缓慢的收敛于稳态 。
③ Perm, [ARCH-GARCH] 项 是 (18.24) 式中的 ;
暂时方程表示短期的变动性, 系数为,
④ Tran, [ARCH-Q] 项 是 (18.24) 式中的 ;
⑤ Tran, [ARCH-Q] 项 是 (18.24) 式中的 。
993.0? ??
??
??
??
??
60
例 8 非对称的 CGARCH模型,
前面已经证明了股价的波动具有非对称效应,“利空消息”产生的波动
比等量的“利好消息”产生的波动大,利用非对称 CGARCH模型,我们可
以进一步印证这个结论,
均值方程,
(44349)
方差方程,
( -2.96) ( 1.29) ( 9.41)
(2.17) (118.11) (4.28)
R2 = 0.994 对数似然值 = 2874 AIC = -5.51 SC = -5.51
)lo g (0 0 0 0 2 3.1)?lo g ( 1??? tt spps
)??(651.0)??(05.0)??(127.0?? 12 1112 112 12 ??????? ??????????? ttttttttt qdququq ??
)??(132.0)0004.0?(985.00004.0? 2 12 11 ??? ??????? tttt uqq ?
61
62
在结果表格中 Tran, (RES<0) [ARCH-Q] 项 是 (18.25) 式中的 ?, 是
暂时方程中的非对称项,本例中 ? = 0.05,说明存在杠杆效应。由于哑
变量 d 表示负冲击,所以这种杠杆效应就可以解释为负的冲击比正的冲
击带来的波动大。需要注意的是,这种非对称效应只出现在暂时方程中,
也就是说,出现的这种非对称效应只是暂时的,它对长期波动率 qt 的影
响是:它使得长期方程中 ? 的减小为 0.985,这将会导致长期波动率 qt
以更快的速度收敛于稳态。
63
§ 18.7 命 令
用 ARCH程序估计 GARCH模型,
equation eq1.arch(1,1) sp500 c
在条件均值方程中估计仅含一个常数的 GARCH(1,1)模型 。
eq1.arch(1,1) sp500 c @ d_mon
在条件均值方程中估计含有一个常数的 GARCH(1,1)模型, 并在条件
方差方程中估计 D_MON。
eq1.makegarch garch1
从 EQ1中储存估计的条件方差序列作为一个名称为 GARCH1的序列 。
参见 Command and Programming Reference,其中列出了 ARCH估计中
可得到的所有的命令和选项。
返 回