ASICs...THE COURSE (1 WEEK) 1 PROGRAMMABLE ASIC LOGIC CELLS 5.1 Actel ACT 5.1.1 ACT 1 Logic Module Key concepts: basic logic cell ? multiplexer-based cell ? look-up table (LUT) ? programmable array logic (PAL) ? influence of programming technology ? timing ? worst-case design The Actel ACT architecture (a) Organization of the basic logic cells (b) The ACT 1 Logic Module (LM, the Actel basic logic cell). The ACT 1 family uses just one type of LM. ACT 2 and ACT 3 FPGA families both use two different types of LM (c) An example LM implementation using pass transistors (without any buffering) (d) An example logic macro. Connect logic signals to some or all of the LM inputs, the re- maining inputs to VDD or GND F (b) (c) (d) S3 FA0 SA F1A1B0 SB F2B1 S0S1 O1 S A0A1 SA 01 0 1SB0 B1SB 01S S0S1 M1 M2 O1 M3 S3 F1 F2 01 0 101 D'1' D A'1' C '0'B F (a) Actel ACT Logic Module Logic Module Logic Module F=(A ·B) +(B' ·C)+D F1 F2 5 2 SECTION 5 PROGRAMMABLE ASIC LOGIC CELLS ASICS... THE COURSE 5.1.2 Shannon’s Expansion Theorem ? We can use the Shannon expansion theorem to expand F =A·F(A='1') + A'·F(A='0') Example: F =A'·B + A·B·C' + A'·B'·C = A·(B·C') + A'·(B + B'·C) ? F(A='1')=B·C' is the cofactor of F with respect to (wrt) A or FA ? If we expand F wrt B, F =A'·B + A·B·C' + A'·B'·C = B·(A' + A·C') + B'·(A'·C) ? Eventually we reach the unique canonical form, which uses only minterms ? (A minterm is a product term that contains all the variables of F—such as A·B'·C) Another example: F=(A·B) + (B'·C) + D ? Expand F wrt B: F=B·(A + D) + B'·(C + D) =B·F2 + B'·F1 ? F = 2:1 MUX, with B selecting between two inputs: F(A='1') and F(A='0') ? F also describes the output of the ACT 1 LM ? Now we need to split up F1 and F2 ? Expand F2 wrt A, and F1 wrt C: F2=A + D=(A·1) + (A'·D); F1=C + D=(C·1) + (C'·D) ? A, B, C connect to the select lines and '1' and D are the inputs of the MUXes in the ACT 1 LM ? Connections: A0=D, A1='1', B0=D, B1='1', SA=C, SB=A, S0='0', and S1=B ASICs... THE COURSE 5.1 Actel ACT 3 5.1.3 Multiplexer Logic as Function Generators Example of using the WHEEL functions to implement F=NAND(A, B)=(A·B)' ? 1. First express F as the output of a 2:1 MUX: we do this by expanding F wrt A (or wrt B; since F is symmetric) F=A·(B') + A'·('1') ? 2. Assign WHEEL1 to implement INV(B), and WHEEL2 to implement '1' ? 3. Set the select input to the MUX connecting WHEEL1 and WHEEL2, S0+S1=A. We can do this using S0=A, S1='1' The 16 logic functions of 2 variables: ? 2 of the 16 functions are not very in- teresting (F='0', and F='1') ? There are 10 functions that we can implement using just one 2:1 MUX ? 6 functions are useful: INV, BUF, AND, OR, AND1-1, NOR1-1 Boolean functions using a 2:1 MUX Function, F F= Canonical form Min-terms Min- term code Func- tion number M1 A0 A1 SA 1 '0' '0' '0' none 0000 0 0 0 0 2 NOR1-1(A, B) (A+B') A'·B 1 0010 2 B 0 A 3 NOT(A) A' A'·B' + A'·B 0, 1 0011 3 0 1 A 4 AND1-1(A, B) A·B' A·B' 2 0100 4 A 0 B 5 NOT(B) B' A'·B' + A·B' 0, 2 0101 5 0 1 B 6 BUF(B) B A'·B + A·B 1, 3 1010 6 0 B 1 7 AND(A, B) A·B A·B 3 1000 8 0 B A 8 BUF(A) A A·B' + A·B 2, 3 1100 9 0 A 1 9 OR(A, B) A+B A'·B + A·B' + A·B 1, 2, 3 1110 13 B 1 A 10 '1' '1' A'·B' + A'·B + A·B' + A·B 0, 1, 2, 3 1111 15 1 1 1 14 functions of 2 variables (and F='0', F ='1' makes 16) 0 1AB 1 01 101 F 4 ways toarrangeone '0' 0 1AB 1 10 001 F 6 ways toarrangetwo '1's 0 1AB 0 10 001 F 4 ways toarrangeone '1' 4 SECTION 5 PROGRAMMABLE ASIC LOGIC CELLS ASICS... THE COURSE 5.1.4 ACT 2 and ACT 3 Logic Modules ? ACT 1 requires 2 LMs per flip-flop: with unknown interconnect capacitance ? ACT 2 and ACT 3 use two types of LMs, one includes a D flip-flop ? ACT 2 C-Module is similar to the ACT 1 LM but can implement five-input logic func- tions ? combinatorial module implements combinational logic (blame MMI for the misuse of terms) ? ACT 2 S-Module (sequential module) contains a C-Module and a sequential ele- ment The ACT 1 Logic Module as a Boolean function generator (a) A 2:1 MUX viewed as a function wheel (b) The ACT 1 Logic Module is two function wheels, an OR gate, and a 2:1 MUX ? A 2:1 MUX is a function wheel that can generate BUF, INV, AND-11, AND1-1, OR, AND ? WHEEL(A, B) =MUX(A0, A1, SA) ? MUX(A0, A1, SA)=A0·SA' + A1·SA ? The inputs (A0, A1, SA) ={A, B, '0', '1'} ? Each of the inputs (A0, A1, and SA) may be A, B, '0', or '1' ? The ACT 1 LM is built from two function wheels, a 2:1 MUX, and a two-input OR gate ? ACT 1 LM =MUX [WHEEL1, WHEEL2, OR(S0, S1)] (a) A0A1 SA 01 M1 (b) F01 010 1 01 M1 M2 WHEEL1 WHEEL2 F C, D A, BBUF INVAND-11 NOR1-1 AND1-1 NOR-11OR AND S0 S1S0S1A two-input MUXcan implementthese functions,selected by A0,A1, and SA. The ACT 1 Logic Module can implement these functions. F1 M3 M3 S3 S3 M2 WHEEL M1 ASICs... THE COURSE 5.1 Actel ACT 5 5.1.5 Timing Model and Critical Path Example of timing calculations (a rather complex examination of internal module timing): ? The setup and hold times, measured inside (not outside) the S-Module, are t'SUD and t'H (a prime denotes parameters that are measured inside the S-Module) ? The clock–Q propagation delay is t'CO ? The parameters t'SUD, t'H, and t'CO are measured using the internal clock signal CLKi ? The propagation delay of the combinational logic inside the S-Module is t'PD ? The delay of the combinational logic that drives the flip-flop clock signal is t'CLKD ? From outside the S-Module, with reference to the outside clock signal CLK1: tSUD=t'SUD + (t'PD – t'CLKD), tH=t'H + (t'PD – t'CLKD), tCO=t'CO + t'CLKD ? We do not know the internal parameters t'SUD, t'H, and t'CO, but assume reasonable values: t'SUD=0.4ns, t'H=0.1ns, t'CO=0.4ns. ? t'PD (combinational logic inside the S-Module) is equal to the C-Module delay, so t'PD=3ns for the ACT 3 ? We do not know t'CLKD; assume a value of t'CLKD=2.6ns (the exact value does not mat- ter) ? Thus the external S-Module parameters are: tSUD=0.8ns, tH=0.5ns, tCO=3.0ns ? These are the same as the ACT 3 S-Module parameters (I chose t'CLKD so they would be) ? Of the 3.0ns combinational logic delay: 0.4ns increases the setup time and 2.6ns increases the clock–output delay, tCO ? Actel says that the combinational logic delay is buried in the flip-flop setup time. But this is borrowed money—you have to pay it back. 5.1.6 Speed Grading ? Speed grading (or speed binning) uses a binning circuit ? Measure tPD=(tPLH + tPHL)/2 — and use the fact that properties match across a chip ? Actel speed grades are based on 'Std' speed grade Keywords and concepts: timing model ? deals only with internal logic ? estimates delays ? before place-and-route step ? nondeterministic architecture ? find slowest register–register delay or critical path 6 SECTION 5 PROGRAMMABLE ASIC LOGIC CELLS ASICS... THE COURSE ? '1' speed grade is approximately 15 percent faster than 'Std' ? '2' speed grade is approximately 25 percent faster than 'Std' ? '3' speed grade is approximately 35 percent faster than 'Std'. Actel ACT 2 and ACT 3 Logic Modules (a) The C-Module for combinational logic (b) The ACT 2 S-Module (c) The ACT 3 S-Module (d) The equivalent circuit (without buffering) of the SE (sequential element) (e) The SE configured as a positive-edge–triggered D flip-flop D00D11D01D10 S1S0 Y OUT (a) A1B1A0 B0 S1 D00D11D01D10 Y Q CLRCLK (c) A1B1 S0A0B0S1 D00D11D01D10 Y Q CLRCLK (b) A1B1 S0A0 D QZS01 ZS01 C2C1 CLR (d) SE SE SE (sequential element) C2D QC1 CLR SE D Q CLR CLK DCLK (e) masterlatch slavelatch combinationallogic for clockand clear 1D C1 Q C-Module S-Module (ACT 2) S-Module (ACT 3) flip-flop macro ASICs... THE COURSE 5.1 Actel ACT 7 Timing views from inside and outside the Actel ACT S-module (a) Timing parameters for a 'Std' speed grade ACT 3 (b) Flip-flop timing (c) An example of flip-flop timing based on ACT 3 parameters CLKi QiDi CLK1 CL t'PD t'CLKD t'SUD(t'H) t'CO D1 QD tSUD = t'SUD + t'PD – t'CLKD (tH) tCOtSUD tCO = t'CO + t'CLKDtH = t'H + t'PD – t'CLKD Q1 Q1D1CLK1 QD tSUD = (0.4 + 3.0 – 2.6) = 0.8ns tCO = (0.4 + 2.6) = 3.0nstH = (0.1 + 3.0 – 2 ˇ) = 0.5ns 0.8ns(0.5ns)3.0 ns CLKi QiDi 3ns 2.6ns 0.4 ns(0.1 ns)0.4ns D1 (c)(b) Q1 Q1D1CLK1 S-Module S-Module CL (a) S1 S1 Viewfrominsidelooking out. Viewfrom outsidelookingin. CLK1 combinationallogic delay setuptime clock tooutput delay setuptime clock tooutput delay S2clock buffer S1C1 tPD tSUD tCO Q CLK1 D 3.0ns 0.8ns 3.0ns CL CL? internal clockCLK ? = variable routing delay? O1I1 D Q? ?CLK2 tSUD tCO 0.8ns 3.0ns ? clockpad internalsignalinternalsignal S-Module(tH)(hold time)(0.5ns)C-Module S-Module timingparameters typical figures 8 SECTION 5 PROGRAMMABLE ASIC LOGIC CELLS ASICS... THE COURSE 5.1.7 Worst-Case Timing 5.1.8 Actel Logic Module Analysis ? Actel uses a fine-grain architecture which allows you to use almost all of the FPGA ? Synthesis can map logic efficiently to a fine-grain architecture Keywords and concepts: Using synchronous design you worry about how slow your circuit may be—not how fast ? ambient temperature, TA ? package case temperature, TC (military) ? temperature of the chip, the junction temperature, TJ ? nominal operating conditions: VDD=5.0V, and TJ=25°C ? worst-case commercial conditions: VDD=4.75V, and TJ=+70°C ? always design using worst-case timing ? derating factors ? critical path delay between registers ? process corner (slow–slow ? fast–fast ? slow–fast ? fast–slow) ? Commercial. VDD=5V ± 5%, TA (ambient)=0 to +70°C ? Industrial. VDD=5V ± 10%, TA (ambient)=–40 to +85°C ? Military: VDD=5V ± 10%, TC (case)=–55 to +125°C ? Military: Standard MIL-STD- 883C Class B ? Military extended: unmanned spacecraft ACT 3 timing parameters Fanout Family Delay 1 2 3 4 8 ACT 3-3 (data book) tPD 2.9 3.2 3.4 3.7 4.8 ACT3-2 (calculated) tPD/0.85 3.41 3.76 4.00 4.35 5.65 ACT3-1 (calculated) tPD/0.75 3.87 4.27 4.53 4.93 6.40 ACT3-Std (calculated) tPD/0.65 4.46 4.92 5.23 5.69 7.38 ACT 3 derating factors Temperature TJ (junction)/°C VDD/V –55 –40 0 25 70 85 125 4.5 0.72 0.76 0.85 0.90 1.04 1.07 1.17 4.75 0.70 0.73 0.82 0.87 1.00 1.03 1.12 5.00 0.68 0.71 0.79 0.84 0.97 1.00 1.09 5.25 0.66 0.69 0.77 0.82 0.94 0.97 1.06 5.5 0.63 0.66 0.74 0.79 0.90 0.93 1.01 ASICs... THE COURSE 5.2 Xilinx LCA 9 ? Physical symmetry simplifies place-and-route (swapping equivalent pins on opposite sides of the LM to ease routing) ? Matched to small antifuse programming technology ? LMs balance efficiency of implementation and efficiency of utilization ? A simple LM reduces performance, but allows fast and robust place-and-route 5.2 Xilinx LCA 5.2.1 XC3000 CLB ? A 32-bit look-up table (LUT) ? CLB propagation delay is fixed (the LUT access time) and independent of the logic function ? 7 inputs to the XC3000 CLB: 5 CLB inputs (A–E), and 2 flip-flop outputs (QX and QY) ? 2 outputs from the LUT (F and G). Since a 32-bit LUT requires only five variables to form a unique address (32=25), there are several ways to use the LUT: ? Use 5 of the 7 possible inputs (A–E, QX, QY) with the entire 32-bit LUT (the CLB out- puts (F and G) are then identical) ? Split the 32-bit LUT in half to implement 2 functions of 4 variables each; choose 4 input variables from the 7 inputs (A–E, QX, QY).You have to choose 2 of the inputs from the 5 CLB inputs (A–E); then one function output connects to F and the other output connects to G. ? You can split the 32-bit LUT in half, using one of the 7 input variables as a select input to a 2:1 MUX that switches between F and G (to implemen some functions of 6 and 7 variables). 5.2.2 XC4000 Logic Block Keywords and concepts: Xilinx LCA (a trademark, logic cell array) ? configurable logic block ? coarse-grain architecture 10 SECTION 5 PROGRAMMABLE ASIC LOGIC CELLS ASICS... THE COURSE The Xilinx XC3000 CLB (configurable logic block) (Source: Xilinx.) D Q RD QXF GQY D Q RD FG QX QY combinationalfunctionA BC DE EC enable clock K clockRD reset direct'1' (enable) '0' (inhibit)(global reset) DI data in X Y CLBoutputs flip-flop flip-flop M M M M M M CL M M programmable MUX ASICs... THE COURSE 5.2 Xilinx LCA 11 The Xilinx XC4000 family CLB (configurable logic block). (Source: Xilinx.) YCLBoutputsG'H' D QY EC RD SD 1 M XF' G'H'F'DIN G'H'F'DIN 1 M D QX EC RD SDSET/RSTcontrol SET/RSTcontrolH1 DIN EC S/R C1 C2 C3 C4 K global clock M four control lines per CLB for internalcontrol or SRAM control F1:F4 4 G1:G4 4 programmableMUX carrylogic carryin carryin carryout carryout carrylogic4 4 M M M M to/from adjacent CLB = programmable MUXM to/from adjacent CLB flip-flop flip-flop CL CL LUT LUT LUT clockenable 12 SECTION 5 PROGRAMMABLE ASIC LOGIC CELLS ASICS... THE COURSE 5.2.3 XC5200 Logic Block 5.2.4 Xilinx CLB Analysis The use of a LUT has advantages and disadvantages: ? An inverter is as slow as a five-input NAND ? A LUT simplifies timing of synchronous logic ? Matched to large SRAM programming technology Xilinx uses two speed-grade systems: ? Maximum guaranteed toggle rate of a CLB flip-flop (in MHz) as a suffix—higher is faster ? Example: Xilinx XC3020-125 has a toggle frequency of 125MHz ? Delay time of the combinational logic in a CLB in ns—lower is faster ? Example: XC4010-6 has tILO=6.0ns ? Correspondence between grade and tILO is fairly accurate for the XC2000, XC4000, and XC5200 but not for the XC3000 The Xilinx XC5200 family Logic Cell (LC) and configurable logic block (CLB).(Source: Xilinx.) D Q CLRcombinational function Qflip-flop orlatch DO X M CI COF5_MUX F data in LUT carryin carryoutLC0 to LC1 andLC2 to LC3 only F4:F1 DI LC3LC2 LC1LC0 CLBCE, CK, CLR 01 SM M 4 Logic Cell (LC) (4 LCs in a CLB) CE,CK,CLR carrychain M = programmable MUX CECLK 3 3 ASICs... THE COURSE 5.2 Xilinx LCA 13 Xilinx LCA timing model (XC5210-6) (Source: Xilinx.) O1 CLB3CLB2CLB1 Q CLKC3 DD Q CL CL? ?? internal clock ? ? I1 CLKC1 tCKO tILO tICK tCKOtDICK clock to outputdelay combinationallogic delay setuptime clock tooutput delaysetuptime0.8 ns 5.6ns 2.3ns 5.8ns5.8ns IK I2 ? = variable routing delay internalsignal 14 SECTION 5 PROGRAMMABLE ASIC LOGIC CELLS ASICS... THE COURSE 5.3 Altera FLEX The Altera FLEX architecture (a) Chip floorplan (b) Logic Array Block (LAB) (c) Details of the Logic Element (LE) (Source: Altera (adapted with permission).) D Q CLRflip-flop OUTM CRYI CRYO F carryin carryout D4:D1 CASCOcascade out CASCIcascadein carrychain cascadechainLC2:LC1 CLK PRE PRE, CLR CLK LC4:LC1 M = programmableMUXLC4:LC3 D3 D4:D1 CL CL44 Logic Element (LE) Logic ArrayBlock (LAB) Altera FLEX 8 LEsper LAB CL LUT (a) (b) (c) LE3LE2 LE1 localinterconnect LE0 LE2 M ASICs... THE COURSE 5.4 Altera MAX 15 5.4 Altera MAX A registered PAL with i inputs, j product terms, and k macrocells. (Source: Altera (adapted with permission).) Features and keywords: ? product-term line ? programmable array logic ? bit line ? word line ? programmable-AND array (or product-term array) ? pull-up resistor ? wired-logic ? wired-AND ? macrocell ? 22V10 PLD 1 D Q productterm i inputs j-wide OR array j OUT A B C i macrocell programmable AND array (2i × jk) k macrocells j CLK 16 SECTION 5 PROGRAMMABLE ASIC LOGIC CELLS ASICS... THE COURSE 5.4.1 Logic Expanders The Altera MAX architecture (the macrocell details vary between the MAX families—the func- tions shown here are closest to those of the MAX 9000 family macrocells) (Source: Altera (adapted with permission).) (a) Organization of logic and interconnect (b) LAB (Logic Array Block) (c) Macrocell Features: ? Logic expanders and expander terms (helper terms) increase term efficiency ? Shared logic expander (shared expander, intranet) and parallel expander (internet) ? Deterministic architecture allows deterministic timing before logic assignment ? Any use of two-pass logic breaks deterministic timing ? Programmable inversion increases term efficiency MDQ systemclock(s) sharedexpander macrocell 2 chipwideinterconnect (a) LAB LAB LAB LAB LAB LAB LAB(Logic Array Block) 16macrocellsper LAB (b) (c) AlteraMAX systemclear parallel expanderto next macrocell 3 5 producttermselect5 clock, clear,preset, enableprogrammableinversion macrocelloutput othermacrocellsin LABmacrocell feedback OUT 114 macrocell 1 LA LA(localarray) ASICs... THE COURSE 5.4 Altera MAX 17 5.4.2 Timing Model Altera MAX timing model (ns for the MAX 9000 series, '15' speed grade) (Source: Altera .) (a) A direct path through the logic array and a register (b) Timing for the direct path (c) Using a parallel expander (d) Parallel expander timing (e) Making two passes through the logic array to use a shared expander (f) Timing for the shared expander (there is no register in this path) logicarraytLAD4.0 O1I1 setup registerdelaytSU tRD3.0 1.0 M1 internalsignalinternalsignal localarray LA tLOCAL 0.5 t1 t2 t3 t1 t2 t3 t4 localarray macrocellarray M1 M2 O1 I1 I2 O2M1M2I2 internalsignal parallelexpander M1 tPEXP 1.0 O2 setup registerdelaytSU tRD3.0 1.0 M2 internalsignal localarray LA tLOCAL 0.5 logicarray tLAD 4.0 I3internalsignal sharedexpander M1 tSEXP 5.0logicarray tLAD 4.0 M1 M2 I3 O3 t4 t5 t1 t2 t3localarray LA tLOCAL 0.5 localarrayLA tLOCAL 0.5 O3 combinationaltCOMB1.0 M2 internalsignal t4 t5 LA LA LA t1 t2 t3t4 t1 t2 t1 t2 t3 t4t5 t3 t4 t5 (c) (a) (e) (d) (b) (f) total=8.5ns total=9.5ns total=11ns 18 SECTION 5 PROGRAMMABLE ASIC LOGIC CELLS ASICS... THE COURSE 5.4.3 Power Dissipation in Complex PLDs 5.5 Summary 5.6 Problems Key points: static power ? Turbo Bit Key points: The use of multiplexers, look-up tables, and programmable logic arrays ? The dif- ference between fine-grain and coarse-grain FPGA architectures ? Worst-case timing design ? Flip-flop timing ? Timing models ? Components of power dissipation in programmable ASICs ? Deterministic and nondeterministic FPGA architectures