Solution 4.6.4.10
The closed loop transfer function is
K
(s+1)(s+4)(s+10)
1+
K
=
K
s
3
+15s
2
+54s +(K + 40)
:
The characteristic equation is
s
3
+15s
2
+54s +(K +40)=0:
The MATLAB program
p1 =1
p2 =4
p3 =10
v1 = [1 p1]
v2 = [1 p2]
v3 =[1 p3]
p=conv(v1,v2)
p=conv(p,v3)
K=10
p=[1 15 54 K+40]
roots(p)
K=17.04
p=[1 15 54 K+40]
roots(p)
K=50
p=[1 15 54 K+40]
roots(p)
K=100
p=[1 15 54 K+40]
roots(p)
K=[10 17.04 50 100]
gh = zpk([],[-1 -4 -10],1)
[R,K] = rlocus(gh,K)
plot(R,'kd')
print -deps rl46410.eps
produces the output
1
EDU>sm46410a
p1 =
1
p2 =
4
p3 =
10
v1 =
1 1
v2 =
1 4
v3 =
1 10
p=
1 5 4
p=
1 15 54 40
2
K=
10
p=
1 15 54 50
ans =
-10.1764
-3.3622
-1.4613
K=
17.0400
p=
1.0000 15.0000 54.0000 57.0400
ans =
-10.2915
-2.3623
-2.3462
K=
50
3
p=
1 15 54 90
ans =
-10.7582
-2.1209+ 1.9666i
-2.1209- 1.9666i
K=
100
p=
1 15 54 140
ans =
-11.3229
-1.8386+ 2.9973i
-1.8386- 2.9973i
K=
10.0000 17.0400 50.0000 100.0000
Zero/pole/gain:
1
------------------
(s+1) (s+4) (s+10)
4
-12 -10 -8 -6 -4 -2 0
-3
-2
-1
0
1
2
3
Figure 1: Plot of solutions
R=
-10.1764 -10.2915 -10.7582 -11.3229
-3.3622 -2.3623 -2.1209- 1.9666i -1.8386- 2.9973i
-1.4613 -2.3462 -2.1209+ 1.9666i -1.8386+ 2.9973i
K=
10.0000
17.0400
50.0000
100.0000
EDU>
The plot of the points is shown in Figure 1
For K = 10, the MATLAB dialogue
5
EDU>g = zpk([],[-1 -4 -10],10)
Zero/pole/gain:
10
------------------
(s+1) (s+4) (s+10)
EDU>h =1
h=
1
EDU>tc = feedback(g,h)
Zero/pole/gain:
10
-----------------------------
(s+10.18) (s+3.362) (s+1.461)
EDU>step(tc)
EDU>print sr46410a.eps
EDU>
produces the step response shown in Figure 2.
For K =17:04, the MATLAB dialogue
EDU>g = zpk([],[-1 -4 -10],17.04)
Zero/pole/gain:
17.04
------------------
(s+1) (s+4) (s+10)
EDU>tc = feedback(g,1)
Zero/pole/gain:
17.04
-----------------------------
(s+10.29) (s+2.362) (s+2.346)
6
Time (sec.)
A
mp
li
tu
d
e
Step Response
0 0.5 1 1.5 2 2.5 3 3.5 4
0
0.05
0.1
0.15
0.2
0.25
Figure 2: Step Response for K =10
7
Time (sec.)
A
mp
li
tu
d
e
Step Response
0 0.5 1 1.5 2 2.5
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
Figure 3: Step Response for K =4:87
EDU>step(tc)
EDU>print -deps sr46410b.eps
produces the step response shown in Figure 3.
For K = 50, the MATLAB dialogue
EDU>g = zpk([],[-1 -4 -10],50)
Zero/pole/gain:
50
------------------
(s+1) (s+4) (s+10)
EDU>tc = feedback(g,1)
Zero/pole/gain:
50
--------------------------------
(s+10.76) (s^2 + 4.242s + 8.366)
8
Time (sec.)
A
mp
li
tu
d
e
Step Response
0 0.5 1 1.5 2 2.5 3
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
Figure 4: Step Response for K =10
EDU>step(tc)
EDU>print -deps sr46410c.eps
EDU>
produces the step response shown in Figure 4.
For K = 100, the MATLAB dialogue
EDU>g = zpk([],[-1 -4 -10],100)
Zero/pole/gain:
100
------------------
(s+1) (s+4) (s+10)
EDU>tc = feedback(g,1)
Zero/pole/gain:
100
9
Time (sec.)
A
mp
li
tu
d
e
Step Response
0 0.6 1.2 1.8 2.4 3 3.6
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
Figure 5: Step Response for K =100
--------------------------------
(s+11.32) (s^2 + 3.677s + 12.36)
EDU>step(tc)
EDU>print -deps sr46410d.eps
EDU>
produces the step response shown in Figure 5.
10