Solution 4.6.3.2
The characteristic equation is
1+
K
(s;1)(s +5)(s +20)
=0;;
which can be rewritten as
s
3
+24s
2
+75s +(K ;100)
(s;1)(s +5)(s +20)
=0;;
or
s
3
+24s
2
+75s +(K ;100) = 0:
The initial Routh table is
s
3
1 75 0
s
2
24 K ;100 0
s
1
b
1
b
2
0
s
0
c
1
0 0
.
Then
b
1
=
;Det
"
1 75
24 K-100
#
24
=
;(K ;100;1800)
24
=
;(K ;1900)
24
b
2
=
;Det
"
1 0
24 0
#
24
=
;(0;0)
24
=0
b
3
=
;Det
"
1 0
K 0
#
24
=
;(0;0)
24
=0
The partially completed Routh table is
s
3
1 75 0
s
2
24 K ;100 0
s
1
;
K;1900
24
0 0
s
0
c
1
0 0
.
1
Then
c
1
=
;Det
"
24 K ;100
;
K;1900
24
0
#
;
K;1900
24
= K ;100
The completed Routh table is
s
3
1 75 0
s
2
24 K ;100 0
s
1
;
K;1900
24
0 0
s
0
K ;100 0 0
.
For all the terms in the rst column to be positivewemust have
;
K ;1900
24
> 0 and (K ;100) > 0;;
or, equivalently
K>100 and K<1900:
2