Solution 4.6.2.9
The characteristic polynomial is
p(s)=s
4
+24s
3
+196s
2
+624s + 640:
The initial Routh table is
s
4
1 196 640 0
s
3
24 624 0 0
s
2
b
1
b
2
0 0
s
1
c
1
c
2
0 0
s
0
d
1
0 0 0
.
Then
b
1
=
;Det
"
1 196
24 624
#
24
=
;(624;4704)
24
=170
b
2
=
;Det
"
1 640
24 0
#
24
=
;(0;(640)(24)
24
=640
b
3
=
;Det
"
1 0
24 0
#
24
=
;(0;040)
24
=0
The partially completed Routh table is now
s
4
1 196 640 0
s
3
24 624 0 0
s
2
170 640 0 0
s
1
c
1
c
2
0 0
s
0
d
1
0 0 0
.
c
1
=
;Det
"
24 624
170 640
#
170
=
;(15360;106080)
170
= 9072=17
1
c
2
=
;Det
"
24 0
170 0
#
170
=
;(0;0)
170
= 0:
The partially completed Routh table is now
s
4
1 196 640 0
s
3
24 624 0 0
s
2
170 640 0 0
s
1
9072/17 0 0 0
s
0
d
1
0 0 0
.
d
1
=
;Det
"
170 640
9072=17 0
#
9072=17
=
;(0;(640)(9072=17))
9072=17
= 640
d
2
=
;Det
"
170 0
9072=17 0
#
9072=17
=
;(0;0)
9072=17
= 0:
The completed Routh arrayis
s
4
1 196 640 0
s
3
24 624 0 0
s
2
170 640 0 0
s
1
9072/17 0 0 0
s
0
640 0 0 0
.
There are no sign changes in the rt column, and therefore no roots in
the right half of the s plane. This is veried by the MATLAB dialogure:
2
EDU>p = [1 24 196 624 640]
p=
1 24 196 624 640
EDU>roots(p)
ans =
-10.0000
-8.0000
-4.0000
-2.0000
EDU>
3