Solution 4.6.2.1
The characteristic polynomial is
p(s)=s
3
;2s
2
;5s +6:
The initial Routh table is
s
3
1 -5 0
s
2
-2 6 0
s
1
b
1
b
2
0
s
0
c
1
0 0
.
Then
b
1
=
;Det
"
1 ;5
;2 6
#
;2
=
;(6;10)
;2
= ;2;;
b
2
=
;Det
"
1 0
;2 0
#
;2
=
;(0;0)
3
=0
c
1
=
;Det
"
;2 6
;2 0
#
;2
=
;(0 + 12)
;2
=6:
The nal Routh table is
s
3
1 ;5 0
s
2
;2 6 0
s
1
;2 0 0
s
0
6 0 0
.
There sign changes, positivetonegativeaswegofrom row one to row2,and
negativebacktopositiveaswegofromrow3torow4.Thus there are two
roots in the righthalf plane. This is veried by the MATLAB dialogure:
EDU>p = [1 -2 -5 6]
p=
1 -2 -5 6
1
EDU>roots (p)
ans =
3.00000000000000
-2.00000000000000
1.00000000000000
EDU>
2