Solution 4.6.1.9
The characteristic equation is
1+
K(s +1)
s
2
(s +4)(s +60)
=0;;
or
s
4
+64s
3
+240s
2
+ Ks+ K
s
2
(s +4)(s +60)
=0;;
or equivalently
s
4
+64s
3
+240s
2
+ Ks+ K =0:
The MATLAB program
K=1
p=[1 64 240 K K]
roots(p)
K=5
p=[1 64 240 K K]
roots(p)
K=10
p=[1 64 240 K K]
roots(p)
K=100
p=[1 64 240 K K]
roots(p)
K=800
p=[1 64 240 K K]
roots(p)
K=900
p=[1 64 240 K K]
roots(p)
K=2000
p=[1 64 240 K K]
roots(p)
K=[1 5 10 100 800 900 2000]
gh = zpk([-1],[0 0 -4 -60],1)
[R,K] = rlocus(gh,K)
plot(R,'kd')
print -deps rl4619.eps
1
generates the following output
EDU>sm4619
K=
1
p=
1 64 240 1 1
ans =
-60.0003
-3.9967
-0.0015+ 0.0646i
-0.0015- 0.0646i
K=
5
p=
1 64 240 5 5
ans =
-60.0015
-3.9832
-0.0077+ 0.1444i
-0.0077- 0.1444i
2
K=
10
p=
1 64 240 10 10
ans =
-60.0029
-3.9663
-0.0154+ 0.2044i
-0.0154- 0.2044i
K=
100
p=
1 64 240 100 100
ans =
-60.0292
-3.6468
-0.1620+ 0.6562i
-0.1620- 0.6562i
K=
800
3
p=
1 64 240 800 800
ans =
-60.2323
-1.2056+ 2.8874i
-1.2056- 2.8874i
-1.3566
K=
900
p=
1 64 240 900 900
ans =
-60.2611
-1.2213+ 3.1669i
-1.2213- 3.1669i
-1.2964
K=
2000
p=
1 64 240 2000 2000
4
ans =
-60.5740
-1.1610+ 5.3442i
-1.1610- 5.3442i
-1.1039
K=
Columns 1 through 6
1 5 10 100 800 900
Column 7
2000
Zero/pole/gain:
(s+1)
----------------
s^2 (s+4) (s+60)
R=
Columns 1 through 4
-60.0003 -60.0015 -60.0029 -60.0292
-3.9967 -3.9832 -3.9663 -3.6468
-0.0015+ 0.0646i -0.0077+ 0.1444i -0.0154+ 0.2044i -0.1620+ 0.6562i
-0.0015- 0.0646i -0.0077- 0.1444i -0.0154- 0.2044i -0.1620- 0.6562i
Columns 5 through 7
-60.2323 -60.2611 -60.5740
-1.2056+ 2.8874i -1.2213+ 3.1669i -1.1610+ 5.3442i
5
-1.3566 -1.2964 -1.1039
-1.2056- 2.8874i -1.2213- 3.1669i -1.1610- 5.3442i
K=
1
5
10
100
800
900
2000
EDU>
The plot of the points is shown in Figure ??
-70 -60 -50 -40 -30 -20 -10 0
-6
-4
-2
0
2
4
6
Figure 1: Plot of solutions
6