Solution 4.6.1.11
The characteristic equation is
1+
K(s +4)
s
2
(s +2)(s +50)
=0;;
or
s
4
+52s
3
+100s
2
+ Ks+4K
s
2
(s +2)(s +50)
=0;;
or equivalently
s
4
+52s
3
+100s
2
+ Ks+4K =0:
The MATLAB program
K=1
p=[1 52 100 K 4*K]
roots(p)
K=2
p=[1 52 100 K 4*K]
roots(p)
K=5
p=[1 52 100 K 4*K]
roots(p)
K=50
p=[1 52 100 K 4*K]
roots(p)
K=500
p=[1 52 100 K 4*K]
roots(p)
K=[1 2 5 50 500]
gh = zpk([-4],[0 0 -2 -50],1)
[R,K] = rlocus(gh,K)
plot(R,'kd')
print -deps rl46111.eps
generates the following output
EDU>sm46111
K=
1
1
p=
1 52 100 1 4
ans =
-50.0004
-2.0103
0.0053+ 0.1994i
0.0053- 0.1994i
K=
2
p=
1 52 100 2 8
ans =
-50.0008
-2.0202
0.0105+ 0.2812i
0.0105- 0.2812i
K=
5
p=
2
1 52 100 5 20
ans =
-50.0019
-2.0485
0.0252+ 0.4412i
0.0252- 0.4412i
K=
50
p=
1 52 100 50 200
ans =
-50.0192
-2.3250
0.1721+ 1.3001i
0.1721- 1.3001i
K=
500
p=
1 52 100 500 2000
3
ans =
-50.1902
0.6268+ 3.5518i
0.6268- 3.5518i
-3.0633
K=
1 2 5 50 500
Zero/pole/gain:
(s+4)
----------------
s^2 (s+2) (s+50)
R=
Columns 1 through 4
-50.0004 -50.0008 -50.0019 -50.0192
-2.0103 -2.0202 -2.0485 -2.3250
0.0053+ 0.1994i 0.0105+ 0.2812i 0.0252+ 0.4412i 0.1721+ 1.3001i
0.0053- 0.1994i 0.0105- 0.2812i 0.0252- 0.4412i 0.1721- 1.3001i
Column 5
-50.1902
-3.0633
0.6268+ 3.5518i
0.6268- 3.5518i
K=
1
2
4
5
50
500
EDU>
The plot of the points is shown in Figure 1
-60 -50 -40 -30 -20 -10 0 10
-4
-3
-2
-1
0
1
2
3
4
Figure 1: Plot of solutions
5