Solution 4.6.1.2
The characteristic equation is
1+
K
(s +4)(s +8)
=0;;
or
s
2
+12s +(32+K)
(s +4)(s+8)
=0;;
or equivalently
s
2
+12s +(32+K)=0:
The MATLAB program
K=0.1
p=[1 12 K+32]
roots(p)
K=0.51
p=[1 12 K+32]
roots(p)
K=4
p=[1 12 K+32]
roots(p)
K=20
p=[1 12 K+32]
roots(p)
K=50
p=[1 12 K+32]
roots(p)
K=[0.1 0.51 4 20 50]
gh = zpk([],[-4 -8],1)
[R,K] = rlocus(gh,K);;
plot(R,'kd')
print -deps rl4612.eps
generates the following output
K=
0.1000
1
p=
1.0000 12.0000 32.1000
ans =
-7.9748
-4.0252
K=
0.5100
p=
1.0000 12.0000 32.5100
ans =
-7.8682
-4.1318
K=
4
p=
1 12 36
ans =
2
-6
-6
K=
20
p=
1 12 52
ans =
-6.0000+ 4.0000i
-6.0000- 4.0000i
K=
50
p=
1 12 82
ans =
-6.0000+ 6.7823i
-6.0000- 6.7823i
K=
0.1000 0.5100 4.0000 20.0000 50.0000
3
Zero/pole/gain:
1
-----------
(s+4) (s+8)
EDU>
The plot of the points is shown in Figure 1
-8 -7.5 -7 -6.5 -6 -5.5 -5 -4.5 -4
-8
-6
-4
-2
0
2
4
6
8
Figure 1: Plot of solutions
4