Solution 4.6.1.12
The characteristic equation is
1+
K(s +3)
s(s + 2)(s +10)
=0;;
or
s
3
+12s
2
+(20+K)s+3K
s(s +2)(s +10)
=0;;
or equivalently
s
3
+12s
2
+(20+K)s+3K =0:
The MATLAB program
K=0.5
p=[1 12 20+K 3*K]
roots(p)
K=1
p=[1 12 20+K 3*K]
roots(p)
K=5
p=[1 12 20+K 3*K]
roots(p)
K=10
p=[1 12 20+K 3*K]
roots(p)
K=20
p=[1 12 20+K 3*K]
roots(p)
K=50
p=[1 12 20+K 3*K]
roots(p)
gh = zpk([-3],[0 -2 -10],1)
[R,K] = rlocus(gh,K)
plot(R,'kd')
print -deps rl46112.eps
generates the following output
EDU>sm46112
1
K=
0.5000
p=
1.0000 12.0000 20.5000 1.5000
ans =
-9.9561
-1.9673
-0.0766
K=
1
p=
1 12 21 3
ans =
-9.9119
-1.9314
-0.1567
K=
5
p=
2
1 12 25 15
ans =
-9.5456
-1.2272+ 0.2557i
-1.2272- 0.2557i
K=
10
p=
1 12 30 30
ans =
-9.0519
-1.4740+ 1.0684i
-1.4740- 1.0684i
K=
20
p=
1 12 40 60
ans =
3
-7.8968
-2.0516+ 1.8409i
-2.0516- 1.8409i
K=
50
p=
1 12 70 150
ans =
-4.0454+ 4.6911i
-4.0454- 4.6911i
-3.9091
K=
0.5000 1.0000 5.0000 10.0000 20.0000 50.0000
Zero/pole/gain:
(s+3)
--------------
s(s+2) (s+10)
R=
Columns 1 through 4
-9.9561 -9.9119 -9.5456 -9.0519
-1.9673 -1.9314 -1.2272+ 0.2557i -1.4740+ 1.0684i
-0.0766 -0.1567 -1.2272- 0.2557i -1.4740- 1.0684i
4
Columns 5 through 6
-7.8968 -4.0454+ 4.6911i
-2.0516+ 1.8409i -3.9091
-2.0516- 1.8409i -4.0454- 4.6911i
K=
0.5000
1.0000
5.0000
10.0000
20.0000
50.0000
EDU>
The plot of the points is shown in Figure 1
5
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
-5
-4
-3
-2
-1
0
1
2
3
4
5
Figure 1: Plot of solutions
6