Solution 4.6.1.10
The characteristic equation is
1+
K(s +1)
s
2
(s +4)(s +10)
=0;;
or
s
4
+14s
3
+40s
2
+ Ks+ K
s
2
(s +4)(s +10)
=0;;
or equivalently
s
4
+14s
3
+40s
2
+ Ks+ K =0:
The MATLAB program
K=1
p=[1 14 40 K K]
roots(p)
K=5
p=[1 14 40 K K]
roots(p)
K=10
p=[1 14 40 K K]
roots(p)
K=100
p=[1 14 40 K K]
roots(p)
K=200
p=[1 14 40 K K]
roots(p)
K=[1 5 10 100 200]
gh = zpk([-1],[0 0 -4 -10],1)
[R,K] = rlocus(gh,K)
plot(R,'kd')
print -deps rl46110.eps
generates the following output
EDU>sm46110
K=
1
1
p=
1 14 40 1 1
ans =
-10.0149
-3.9687
-0.0082+ 0.1584i
-0.0082- 0.1584i
K=
5
p=
1 14 40 5 5
ans =
-10.0736
-3.8437
-0.0414+ 0.3570i
-0.0414- 0.3570i
K=
10
p=
2
1 14 40 10 10
ans =
-10.1446
-3.6869
-0.0842+ 0.5102i
-0.0842- 0.5102i
K=
100
p=
1 14 40 100 100
ans =
-11.1435
-0.6963+ 2.3759i
-0.6963- 2.3759i
-1.4639
K=
200
p=
1 14 40 200 200
3
ans =
-11.9349
-0.4469+ 3.7559i
-0.4469- 3.7559i
-1.1713
K=
1 5 10 100 200
Zero/pole/gain:
(s+1)
----------------
s^2 (s+4) (s+10)
R=
Columns 1 through 4
-10.0149 -10.0736 -10.1446 -11.1435
-3.9687 -3.8437 -3.6869 -0.6963+ 2.3759i
-0.0082+ 0.1584i -0.0414+ 0.3570i -0.0842+ 0.5102i -1.4639
-0.0082- 0.1584i -0.0414- 0.3570i -0.0842- 0.5102i -0.6963- 2.3759i
Column 5
-11.9349
-0.4469+ 3.7559i
-1.1713
-0.4469- 3.7559i
K=
1
5
4
10
100
200
EDU>
The plot of the points is shown in Figure 1
-12 -10 -8 -6 -4 -2 0
-4
-3
-2
-1
0
1
2
3
4
Figure 1: Plot of solutions
5