Solution 4.6.1.8
The characteristic equation is
1+
K
s(s + 2)(s +40)
=0;;
or
s
3
+42s
2
+80s+ K
s(s +2)(s +40)
=0;;
or equivalently
s
3
+42s
2
+80s+ K =0:
The MATLAB program
K=1
p=[1 42 80 K]
roots(p)
K=5
p=[1 42 80 K]
roots(p)
K=50
p=[1 42 80 K]
roots(p)
K=100
p=[1 42 80 K]
roots(p)
K=[1 5 50100]
gh = zpk([],[0 -2 -40],1)
[R,K] = rlocus(gh,K)
plot(R,'kd')
print -deps rl4618.eps
generates the following output
EDU>sm4618
K=
1
1
p=
1 42 80 1
ans =
-40.0007
-1.9868
-0.0126
K=
5
p=
1 42 80 5
ans =
-40.0033
-1.9320
-0.0647
K=
50
p=
1 42 80 50
ans =
2
-40.0328
-0.9836+ 0.5306i
-0.9836- 0.5306i
K=
100
p=
1 42 80 100
ans =
-40.0656
-0.9672+ 1.2492i
-0.9672- 1.2492i
K=
1 5 50 100
Zero/pole/gain:
1
--------------
s(s+2) (s+40)
R=
-40.0007 -40.0033 -40.0328 -40.0656
-1.9868 -1.9320 -0.9836- 0.5306i -0.9672- 1.2492i
-0.0126 -0.0647 -0.9836+ 0.5306i -0.9672+ 1.2492i
3
K=
1
5
50
100
EDU>
The plot of the points is shown in Figure 1
-45 -40 -35 -30 -25 -20 -15 -10 -5 0
-1.5
-1
-0.5
0
0.5
1
1.5
Figure 1: Plot of solutions
4