Solution 4.6.2.5
The characteristic polynomial is
p(s)=s
4
+9s
3
+28s
2
+36s +16:
The initial Routh table is
s
4
1 28 16 0
s
3
9 36 0 0
s
2
b
1
b
2
0 0
s
1
c
1
c;2 0 0
s
0
d
1
0 0 0
.
Then
b
1
=
;Det
"
1 28
9 36
#
9
=
;(36;252)
9
=24
b
2
=
;Det
"
1 16
9 0
#
9
=
;(0;144
9
=16
b
3
=
;Det
"
1 0
9 0
#
9
=
;(0;040)
7
=0
The partially completed Routh table is now
s
4
1 28 16 0
s
3
9 36 0 0
s
2
24 16 0 0
s
1
c
1
c
2
0 0
s
0
d
1
0 0 0
.
c
1
=
;Det
"
9 36
24 16
#
24
=
;(144;864)
24
= 30
1
c
2
=
;Det
"
9 0
24 0
#
24
=
;(0;0)
110=7
= 0:
The partially completed Routh table is now
s
4
1 28 16 0
s
3
9 36 0 0
s
2
24 16 0 0
s
1
30 0 0 0
s
0
d
1
0 0 0
.
d
1
=
;Det
"
24 16
30 0
#
30
=
;(0;1630)
30
= 16
c
2
=
;Det
"
24 0
30 0
#
24
=
;(0;0)
30
= 0:
The completed Routh arrayis
s
4
1 28 16 0
s
3
9 36 0 0
s
2
24 16 0 0
s
1
30 0 0 0
s
0
16 0 0 0
.
There are no changes in the rt column, and therefore no roots in the
right half of the s plane. This is veried by the MATLAB dialogure:
2
EDU>p =[1 9 28 36 16]
p=
1 9 28 36 16
EDU>roots(p)
ans =
-4.0000
-2.0000
-2.0000
-1.0000
EDU>
3