Solution 4.6.2.10
The characteristic polynomial is
p(s)=s
4
+2s
3
;2s
2
;8s +;8:
The initial Routh table is
s
4
1 -2 -8 0
s
3
2 -8 0 0
s
2
b
1
b
2
0 0
s
1
c
1
c
2
0 0
s
0
d
1
0 0 0
.
Then
b
1
=
;Det
"
1 ;2
2 ;8
#
2
=
;(;8+4)
2
=2
b
2
=
;Det
"
1 ;8
2 0
#
2
=
;(0+ 16
2
= ;8
b
3
=
;Det
"
1 0
2 0
#
2
=
;(0;0
2
=0
The partially completed Routh table is now
s
4
1 -2 -8 0
s
3
2 -8 0 0
s
2
2 -8 0 0
s
1
c
1
c
2
0 0
s
0
d
1
0 0 0
.
c
1
=
;Det
"
2 ;8
2 ;8
#
2
=
;(;16 + 16)
2
= 0
1
c
2
=
;Det
"
2 0
;9 0
#
2
=
;(0;0)
2
= 0:
Thus , wehaveazero rowThe auxilliary polynomial is
2s
3
;8s;;
Dierentiating yields
d
ds
(2s
3
;8s)=6s
2
;8
Then the adjusted Routh table is now
s
4
1 -2 -8 0
s
3
2 -8 0 0
s
2
6 -8 0 0
s
1
2 c
2
0 0
s
0
d
1
0 0 0
.
Then
c
1
=
;Det
"
2 ;8
6 ;8
#
6
=
;(16 + 48)
6
= ;16=3
The partially completely Routh table is now
s
4
1 -2 -8 0
s
3
2 -8 0 0
s
2
6 -8 0 0
s
1
-16/3 0 0 0
s
0
d
1
0 0 0
.
2
Then
d
1
=
;Det
"
6 ;8
;16=3 0
#
;16=3
=
;(0;(;16=3)(;8))
;16=3
= ;8
d
2
=
;Det
"
6 0
;16=3 0
#
;16=3
=
;(0;0)
;16=3
= 0:
The completed Routh arrayis
s
4
1 -2 -8 0
s
3
2 -8 0 0
s
2
6 -8 0 0
s
1
-16/3 0 0 0
s
0
-8 0 0 0
.
There is one sign changes in the rt column, and therefore one roots in
the right half of the s plane. This is veried by the MATLAB dialogue:
EDU>p = [1 2-2-8-8]
p=
1 2 -2 -8 -8
EDU>roots(p)
ans =
2.0000
-2.0000
-1.0000+ 1.0000i
3
-1.0000- 1.0000i
EDU>
4