Solution 4.6.1.3
The characteristic equation is
1+
K
s(s + 4)(s+8)
=0;;
or
s
3
+12s
2
+32s+ K
s(s +4)(s+8)
=0;;
or equivalently
s
3
+12s
2
+32s+ K =0:
The MATLAB program
K=0.1
p=[1 12 32 K]
roots(p)
K=0.51
p=[1 12 32 K]
roots(p)
K=3.8
p=[1 12 32 K]
roots(p)
K=4
p=[1 12 32 K]
roots(p)
K=4.2
p=[1 12 32 K]
roots(p)
K=20
p=[1 12 32 K]
roots(p)
K=50
p=[1 12 32 K]
roots(p)
K=[0.1 0.513.844.22050]
gh = zpk([],[0 -4 -8],1)
[R,K] = rlocus(gh,K);;
plot(R,'kd')
print -deps rl4613.eps
1
generates the following output
K=
0.1000
p=
1.0000 12.0000 32.0000 0.1000
ans =
-8.0031
-3.9937
-0.0031
K=
0.5100
p=
1.0000 12.0000 32.0000 0.5100
ans =
-8.0158
-3.9681
-0.0160
K=
3.8000
2
p=
1.0000 12.0000 32.0000 3.8000
ans =
-8.1138
-3.7617
-0.1245
K=
4
p=
1 12 32 4
ans =
-8.1196
-3.7490
-0.1314
K=
4.2000
p=
1.0000 12.0000 32.0000 4.2000
3
ans =
-8.1253
-3.7364
-0.1383
K=
20
p=
1 12 32 20
ans =
-8.5194
-2.5655
-0.9151
K=
50
p=
1 12 32 50
ans =
-9.0830
-1.4585+ 1.8378i
-1.4585- 1.8378i
4
K=
0.1000 0.5100 3.8000 4.0000 4.2000 20.0000 50.0000
Zero/pole/gain:
1
-------------
s(s+4) (s+8)
EDU>
The plot of the points is shown in Figure ??
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
Figure 1: Plot of solutions
5