Solution 3.8.8.3
C
1
C
2
R
1
R
2
V
i
V
o
Figure 1: T-network
For the so called T-network of Figure 1, there are manyways arriveatthe
transfer function. One method is to use a wye-delta transformation two
achieveanequivalentcircuit that is a voltage divider. This process is shown
in Figures 2 and 3.
Then
V
o
(s)
V
i
(s)
=
Z
2
+ R
1
Z
1
+Z
2
+ R
1
;;
where
Z
1
=
R
2
C
1
s
R
2
+
1
C
1
s
+
1
C
2
s
=
R
2
C
2
s
R
2
C
1
C
2
s
2
+ C
1
s +C
2
s
;;
and
Z
2
=
1
C
1
s
1
C
2
s
R
2
+
1
C
1
s
+
1
C
2
s
=
1
R
2
C
1
C
2
s
2
+ C
1
s +C
2
s
;;
Then, using these expresssions for Z
1
and Z
2
,wehave
V
o
(s)
V
i
(s)
=
Z
2
+ R
1
Z
1
+ Z
2
+ R
1
1
C
1
C
2
R
1
R
2
V
i V
o
V
o
V
i
R
2
R
1
C
1
C
2
Z
1
Z
3
Z
2
Figure 2: Wye-delta transformation
2
V
i
V
o
Z
1
Z
2
Z
3
V
o
V
i
R
2
R
1
C
1
C
2
Z
1
Z
3
Z
2
R
1
Figure 3: Reduction to Voltage Divider
3
=
1
R
2
C
1
C
2
s
2
+ C
1
s + C
2
s
+ R
1
R
2
C
2
s
R
2
C
1
C
2
s
2
+ C
1
s + C
2
s
+
1
R
2
C
1
C
2
s
2
+ C
1
s + C
2
s
+ R
1
=
R
1
R
2
C
1
C
2
s
2
+ R
1
C
1
s + R
1
C
2
s +1
R
1
R
2
C
1
C
2
s
2
+ R
1
C
1
s +2R
1
C
2
s +1
=
s
2
+
R
1
(C
1
+ C
2
)s
R
1
R
2
C
1
C
2
+
1
R
1
R
2
C
1
C
2
s
2
+
[(C
1
+ C
2
)R
1
+ R
2
C)
2
]s
R
1
R
2
C
1
C
2
+
1
R
1
R
2
C
1
C
2
=
s
2
+
(C
1
+ C
2
)s
R
2
C
1
C
2
+
1
R
1
R
2
C
1
C
2
s
2
+
[(C
1
+ C
2
)R
1
+ R
2
C
2
]s
R
2
C
1
C
2
+
1
R
1
R
2
C
1
C
2
4