Solution 4.6.1.4
The characteristic equation is
1+
K(s +2)
(s +4)(s +8)
=0;;
or
s
2
+(12+K)s +(32+2K)
(s +4)(s+8)
=0;;
or equivalently
s
2
+(12+K)s +(32+2K)=0:
The MATLAB program
K=0.1
p=[1 12+K 32+2*K]
roots(p)
K=0.51
p=[1 12+K 32+2*K]
roots(p)
K=4
p=[1 12+K 32+2*K]
roots(p)
K=20
p=[1 12+K 32+2*K]
roots(p)
K=50
p=[1 12+K 32+2*K]
roots(p)
gh = zpk([-2],[-4 -8],1)
rlocus(gh)
print -deps rl4614.eps
generates the following output
EDU>sm4614
K=
0.1000
1
p=
1.0000 12.1000 32.2000
ans =
-8.1482
-3.9518
K=
0.5100
p=
1.0000 12.5100 33.0200
ans =
-8.7258
-3.7842
K=
4
p=
1 16 40
ans =
2
-12.8990
-3.1010
K=
20
p=
1 32 72
ans =
-29.5647
-2.4353
K=
50
p=
1 62 132
ans =
-59.7924
-2.2076
Zero/pole/gain:
(s+2)
-----------
(s+4) (s+8)
3
EDU>
The root locus is shown in Figure ??
-10 -8 -6 -4 -2 0 2
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
Real Axis
I
mag
A
x
i
s
Figure 1: Root locus
4