Solution 4.6.1.1
The characteristic equation is
1+
K
s(s +4)
=0;;
or
s
2
+4s + K
s(s +4)
=0;;
or equivalently
s
2
+4s + K =0:
The MATLAB program
K=0.1
p=[1 4 K]
roots(p)
K=0.51
p=[1 4 K]
roots(p)
K=4
p=[1 4 K]
roots(p)
K=20
p=[1 4 K]
roots(p)
K=50
p=[1 4 K]
roots(p)
K=[0.1 0.51 4 20 50]
gh = zpk([],[0 -4],1)
[R,K] = rlocus(gh,K);;
plot(R,'kd')
print -deps rl4611.eps
generates the following output
K=
0.1000
1
p=
1.0000 4.0000 0.1000
ans =
-3.9748
-0.0252
K=
0.5100
p=
1.0000 4.0000 0.5100
ans =
-3.8682
-0.1318
K=
4
p=
1 4 4
ans =
2
-2
-2
K=
20
p=
1 4 20
ans =
-2.0000+ 4.0000i
-2.0000- 4.0000i
K=
50
p=
1 4 50
ans =
-2.0000+ 6.7823i
-2.0000- 6.7823i
K=
0.1000 0.5100 4.0000 20.0000 50.0000
3
Zero/pole/gain:
1
-------
s(s+4)
EDU>
The plot of the points is shown in Figure 1
-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
-8
-6
-4
-2
0
2
4
6
8
Figure 1: Plot of solutions
4