Solution 4.6.1.6
The characteristic equation is
1+
K
(s + 1)(s+10)
=0;;
or
s
2
+11s +(10+K)
(s +1)(s+10)
=0;;
or equivalently
s
2
+11s +(10+K)=0:
The MATLAB program
K=1
p=[1 11 10+K]
roots(p)
K=5
p=[1 11 10+K]
roots(p)
K=10
p=[1 11 10+K]
roots(p)
K=20.25
p=[1 11 10+K]
roots(p)
K=50
p=[1 11 10+K]
roots(p)
K=100
p=[1 11 10+K]
roots(p)
K=[1 5 10 20.25 50 100]
gh = zpk([],[-1 -10],1)
[R,K] = rlocus(gh,K)
plot(R,'kd')
print -deps rl4616.eps
generates the following output
1
EDU>sm4616
K=
1
p=
1 11 11
ans =
-9.8875
-1.1125
K=
5
p=
1 11 15
ans =
-9.4051
-1.5949
K=
10
p=
2
1 11 20
ans =
-8.7016
-2.2984
K=
20.2500
p=
1.0000 11.0000 30.2500
ans =
-5.5000
-5.5000
K=
50
p=
1 11 60
ans =
-5.5000+ 5.4544i
-5.5000- 5.4544i
3
K=
100
p=
1 11 110
ans =
-5.5000+ 8.9303i
-5.5000- 8.9303i
K=
1.0000 5.0000 10.0000 20.2500 50.0000 100.0000
Zero/pole/gain:
1
------------
(s+1) (s+10)
R=
Columns 1 through 4
-9.8875 -9.4051 -8.7016 -5.5000
-1.1125 -1.5949 -2.2984 -5.5000
Columns 5 through 6
-5.5000+ 5.4544i -5.5000+ 8.9303i
-5.5000- 5.4544i -5.5000- 8.9303i
4
K=
1.0000
5.0000
10.0000
20.2500
50.0000
100.0000
EDU>
The plot of the points is shown in Figure ??
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1
-10
-8
-6
-4
-2
0
2
4
6
8
10
Figure 1: Plot of solutions
5