Solution 4.6.2.3
The characteristic polynomial is
p(s)=s
4
+7s
3
+24s
2
+58s +40:
The initial Routh table is
s
4
1 24 40 0
s
3
7 58 0 0
s
2
b
1
b
2
0 0
s
1
c
1
c;2 0 0
s
0
d
1
0 0 0
.
Then
b
1
=
;Det
"
1 24
7 58
#
7
=
;(58;168)
7
= 110=7;;
b
2
=
;Det
"
1 40
7 0
#
7
=
;(0;740)
7
=40
b
3
=
;Det
"
1 0
7 0
#
7
=
;(0;040)
7
=0
The partially completed Routh table is now
s
4
1 24 40 0
s
3
7 58 0 0
s
2
110/7 1 0 0
s
1
c
1
c
2
0 0
s
0
d
1
0 0 0
.
c
1
=
;Det
"
7 58
110=7 1
#
110=7
=
;(7;6380=7)
110=7
=
6631
110
1
c
2
=
;Det
"
7 0
110=7 0
#
110=7
=
;(0;0)
110=7
= 0:
The partially nished Routh arrayatthis pointis
s
4
1 24 40 0
s
3
7 58 0 0
s
2
110/7 1 0 0
s
1
6331/110 0 0 0
s
0
d
1
0 0 0
.
d
1
=
;Det
"
110=7 1
6331=110 0
#
6331=110
=
;[0;(6331=110)]
6331=110
= 1
d
2
=
;Det
"
110=7 0
6331=110 0
#
6331=110
=
;(0;0)
6331=110
= 0:
The nal Routh table is
s
4
1 24 40 0
s
3
7 58 0 0
s
2
110/7 1 0 0
s
1
6331/110 0 0 0
s
0
1 0 0 0
.
There are no sign changes in the rt column, therefore all the roots are in
the left half of the s plane. This is veried by the MATLAB dialogure:
2
EDU>p = [1 7245840]
p=
1 7 24 58 40
EDU>roots(p)
ans =
-4.0000
-1.0000+ 3.0000i
-1.0000- 3.0000i
-1.0000
EDU>
3