Solution 4.6.3.10
The characteristic equation is
1+
K(s +3)
s(s + 2)(s+10)(s+50)
=0;;
which can be rewritten as
s
4
+62s
3
+620s
2
+ (1000+ K)s +3K
s
2
(s +2)(s +50)
=0;;
or
s
4
+62s
3
+620s
2
+ (1000+ K)s +3K =0:
The initial Routh table is
s
4
1 620 3K 0
s
3
62 1000+ K 0 0
s
2
b
1
b
2
0 0
s
1
c
1
c
2
0 0
s
0
d
1
0 0 0
.
Then
b
1
=
;Det
"
1 620
62 1000+ K
#
62
=
;(K +1000;62
2
(10))
62
=
;(K ;37;;440)
62
b
2
=
;Det
"
1 3K
62 0
#
52
=
;(;(3)(62)K)
62
= 3K
The partially completed Routh table is
1
s
4
1 620 3K 0
s
3
62 1000+ K 0 0
s
2
;(K;37;;440)
62
3K 0 0
s
1
c
1
c
2
0 0
s
0
d
1
0 0 0
.
Then
c
1
=
;Det
"
62 100+ K
;(K;37;;440)
62
3K
#
;(K;37;;440)
62
=
186K + (1000+ K)(
(K;37;;440)
62
)
;(K;37;;440)
62
=
11;;532K + K
2
+1000K;37;;440K;37;;440;;000
(K ;37;;440)
=
K
2
;25;;908K;37;;440;;000
(K ;37;;440)
The partially completed Routh table is The partially completed Routh table
is
s
4
1 620 3K 0
s
3
62 1000+ K 0 0
s
2
;(K;37;;440)
62
3K 0 0
s
1
K
2
;25;;908K;37;;440;;000
(K;37;;440)
0 0 0
s
0
d
1
0 0 0
.
Then
d
1
=
;Det
"
52 K
K
2
;25;;908K;37;;440;;000
(K;37;;440)
0
#
K
2
;25;;908K;37;;440;;000
(K;37;;440)
= K
The completed Routh table is
s
4
1 620 3K 0
s
3
62 1000+ K 0 0
s
2
;(K;37;;440)
62
3K 0 0
s
1
c
1
c
2
0 0
s
0
d
1
0 0 0
.
2
For all the terms in the rst column to be positivewemust have
;(K ;37;;440)
62
> 0 and
K
2
;25;;908K;37;;440;;000
(K ;37;;440)
> 0and K>0;;
From the rst inequality
;(K ;37;;440)
62
> 0;;
we see that
K ;37;;440 < 0;;
or
K<37;;440:
Applying the rst and the last inequalityto
K
2
;25;;908K;37;;440;;000
(K ;37;;440)
> 0and K>0;;
we see that
K ;37;;440 < 0;;
and hence
K
2
;25;;908K;37;;440;;000< 0:
Since K>0wemust have
K
2
;25;;908K;37;;440;;000< 0;;
or
(K ;27;;280:4)(K+1372:4) < 0;;
or
K<27;;280:4 and K<;1372:4:
Thus, satisfying all four constraints requires
0 <K<27;;280:4:
3