Solution 4.6.3.8
The characteristic equation is
1+
K(s +1)
s
2
(s +2)(s +50)
=0;;
which can be rewritten as
s
4
+52s
3
+100s
2
+ Ks+ K
s
2
(s +2)(s +50)
=0;;
or
s
4
+52s
3
+100s
2
+ Ks+ K =0:
The initial Routh table is
s
4
1 100 K 0
s
3
52 K 0 0
s
2
b
1
b
2
0 0
s
1
c
1
c
2
0 0
s
0
d
1
0 0 0
.
Then
b
1
=
;Det
"
1 100
52 K
#
52
=
;(K ;5200)
52
b
2
=
;Det
"
1 K
52 0
#
52
=
;(;52K)
52
= K
The partially completed Routh table is
s
4
1 100 K 0
s
3
52 K 0 0
s
2
;(K;5200)
52
K 0 0
s
1
c
1
c
2
0 0
s
0
d
1
0 0 0
.
1
Then
c
1
=
;Det
"
52 K
;(K;5200)
52
K
#
;(K;5200)
52
=
;(52
2
K + K
(K;5200)
52
)
;(K;5200)
52
=
K
2
;2496K)
(K ;5200)
The partially completed Routh table is
s
4
1 100 K 0
s
3
52 K 0 0
s
2
;(K;5200)
52
K 0 0
s
1 K
2
;2496K
(K;5200)
0 0 0
s
0
d
1
0 0 0
.
Then
d
1
=
;Det
"
52 K
K
2
;2496K
K;5200
0
#
80
= K
The completed Routh table is
s
4
1 100 K 0
s
3
52 K 0 0
s
2
;(K;5200)
52
K 0 0
s
1 K
2
;2496K
(K;5200)
0 0 0
s
0
K 0 0 0
.
For all the terms in the rst column to be positivewemust have
;(K ;5200)
52
> 0 and
K
2
;2496K
(K ;5200)
> 0and K>0;;
From the rst inequality
;(K ;5200)
52
> 0;;
2
we see that
K ;5200 < 0;;
or
K<5200:
Applying the rst and the last inequalityto
K
2
;2496K
(K ;5200)
> 0and K>0;;
we see that
K ;5200 < 0;;
and hence
K
2
;2496K<0:
Since K>0wemust have
K ;2496 < 0;;
or
K<2496:
Thus, satisfying all three constraintrequires
0 <K<2496:
3