Solution 4.6.1.5
The characteristic equation is
1+
K(s +1)
s(s + 4)(s+8)
=0;;
or
s
3
+12s +(32+K)+K
(s +4)(s+8)
=0;;
or equivalently
s
3
+12s +(32+K)+K =0:
The MATLAB program
K=0.1
p=[1 12 32+K K]
roots(p)
K=0.51
p=[1 12 32+K K]
roots(p)
K=1.5
p=[1 12 32+K K]
roots(p)
K=1.8
p=[1 12 32+K K]
roots(p)
K=2
p=[1 12 32+K K]
roots(p)
K=3.4
p=[1 12 32+K K]
roots(p)
K=20
p=[1 12 32+K K]
roots(p)
K=50
p=[1 12 32+K K]
roots(p)
K=[0.1 0.51 1.5 1.8 2 3.4 20 50]
gh = zpk([-1],[0 -4 -8],1)
[R,K] = rlocus(gh,K)
1
plot(R,'kd')
print -deps rl4615.eps
generates the following output
EDU>sm4615
K=
0.1000
p=
1.0000 12.0000 32.1000 0.1000
ans =
-7.9780
-4.0189
-0.0031
K=
0.5100
p=
1.0000 12.0000 32.5100 0.5100
ans =
-7.8854
-4.0988
-0.0158
2
K=
1.5000
p=
1.0000 12.0000 33.5000 1.5000
ans =
-7.6420
-4.3124
-0.0455
K=
1.8000
p=
1.0000 12.0000 33.8000 1.8000
ans =
-7.5614
-4.3843
-0.0543
K=
2
p=
3
1 12 34 2
ans =
-7.5055
-4.4344
-0.0601
K=
3.4000
p=
1.0000 12.0000 35.4000 3.4000
ans =
-7.0406
-4.8600
-0.0994
K=
20
p=
1 12 52 20
ans =
4
-5.7876+ 3.6860i
-5.7876- 3.6860i
-0.4248
K=
50
p=
1 12 82 50
ans =
-5.6639+ 6.5043i
-5.6639- 6.5043i
-0.6722
K=
Columns 1 through 7
0.1000 0.5100 1.5000 1.8000 2.0000 3.4000 20.0000
Column 8
50.0000
Zero/pole/gain:
(s+1)
-------------
s(s+4) (s+8)
R=
5
Columns 1 through 4
-7.9780 -7.8854 -7.6420 -7.5614
-4.0189 -4.0988 -4.3124 -4.3843
-0.0031 -0.0158 -0.0455 -0.0543
Columns 5 through 8
-7.5055 -7.0406 -5.7876- 3.6860i -5.6639- 6.5043i
-4.4344 -4.8600 -5.7876+ 3.6860i -5.6639+ 6.5043i
-0.0601 -0.0994 -0.4248 -0.6722
K=
0.1000
0.5100
1.5000
1.8000
2.0000
3.4000
20.0000
50.0000
EDU>
The plot of the points is shown in Figure 1
6
-8 -7 -6 -5 -4 -3 -2 -1 0
-8
-6
-4
-2
0
2
4
6
8
Figure 1: Plot of solutions
7