Solution 4.6.1.7
The characteristic equation is
1+
K
(s +5)
3
=0;;
or
s
3
+15s
2
+75s +(125+K)
(s +5)
3
=0;;
or equivalently
s
3
+15s
2
+75s +(125+K)=0:
The MATLAB program
K=10
p=[1 15 75 125+K]
roots(p)
K=100
p=[1 15 75 125+K]
roots(p)
K=400
p=[1 15 75 125+K]
roots(p)
K=580
p=[1 15 75 125+K]
roots(p)
K=1000
p=[1 15 75 125+K]
roots(p)
K=[10 100 400 580 1000]
gh = zpk([],[-5 -5 -5],1)
[R,K] = rlocus(gh,K)
plot(R,'kd')
print -deps rl4617.eps
generates the following output
EDU>sm4617
K=
1
10
p=
1 15 75 135
ans =
-7.1544
-3.9228+ 1.8658i
-3.9228- 1.8658i
K=
100
p=
1 15 75 225
ans =
-9.6416
-2.6792+ 4.0197i
-2.6792- 4.0197i
K=
400
p=
2
1 15 75 525
ans =
-12.3681
-1.3160+ 6.3809i
-1.3160- 6.3809i
K=
580
p=
1 15 75 705
ans =
-13.3396
-0.8302+ 7.2223i
-0.8302- 7.2223i
K=
1000
p=
1 15 75 1125
ans =
-15.0000
3
-0.0000+ 8.6603i
-0.0000- 8.6603i
K=
10 100 400 580 1000
Zero/pole/gain:
1
-------
(s+5)^3
R=
Columns 1 through 4
-7.1544 -9.6416 -12.3681 -13.3396
-3.9228+ 1.8658i -2.6792+ 4.0197i -1.3160+ 6.3809i -0.8302+ 7.2223i
-3.9228- 1.8658i -2.6792- 4.0197i -1.3160- 6.3809i -0.8302- 7.2223i
Column 5
-15.0000
-0.0000+ 8.6603i
-0.0000- 8.6603i
K=
10
100
400
580
1000
EDU>
4
The plot of the points is shown in Figure ??
-15 -10 -5 0
-10
-8
-6
-4
-2
0
2
4
6
8
10
Figure 1: Plot of solutions
5