5.8.1.44
G
H
+
R
CΣ
Figure 1: Standard Closed Loop Conguration
For the system of Figure 1
G(s)H(s)=
K(s +1)
(s;1;j)(s;1+j)(s+10)(s +20)
:
Tables 1, 2, and 3 provide information on possible break-in and break-out
points and crossings of the imaginary axis.
s -9.9 -9.5 -9 -8.5 -8 -7 -6 -5 -4 -3 -2
K 13.6 68.7 138.9 209.9 281.1 422.5 560 693.8 832 1012 1440
Table 1: Searchfor break-in/break-out points
! 1.1 2 2.5 2.6 3 4 6
6
GH(j!) ;251:5
;197
;182:6
;180:5
;174:3
;166:9
;166:6
Table 2: Searchforcrossing points on imaginary axis
From the tables we see that there are no break-in or break-out points
and the root locus crosses the imaginary axis near ! =2:6and! =10:4.
The pole/zero excess (pze) is 4 ;1=3, and there is one nite zero at
s = ;1. This means that one of the limbs of the root locus will terminate
at the zero at s = ;1, and the other three limbs will terminate at zeros at
innity,located at the ends of the asymptotes at
=60
;;=180
;;and 300
:
1
! 8 10 10.4 12 14
6
GH(j!) ;172:1
;178:8
;180:2
;185:5
;191:7
Table 3: Searchfor crossing points of imaginary axis
The asymptotes intersect at
i
=
P
polesofGH ;
P
zeros of GH
pze
=
(;25;50);(;2)
3
= ;24:33:
The root locus, shown in Figure 2, is generated bytheMATLAB program:
K=linspace(0,1000,1000);;
gh = zpk([-1],[1+j*1 1-j*1 -10 -20],10)
[R,K] = rlocus(gh,K);;
plot(R,'k.')
print -deps rl58144.eps
2
-35 -30 -25 -20 -15 -10 -5 0 5
-20
-15
-10
-5
0
5
10
15
20
Figure 2: Accurate root locus
3