Solution 7.9.2.12
Σ
GR C
+
c
G
p
Figure 1: Nonunity feedbackand cascade compensation
For Figure 1 wehave
G
p
(s)=
5
(s + 2)(s +7)
:
Wewish to design G
c
so that the system has dominantclosed loop poles at
s = ;4j4and zero steady state error to a step input, and then nd K
v
,
and sketchthestep response. Weusethe MATLAB program
s=-4+j*4
p1 = 0
p2 = 2
p3 = 7
theta1 = angle(s +p1)
theta1d = theta1*180/pi
theta2 = angle(s + p2)
theta2d = theta2*180/pi
theta3 = angle(s + p3)
theta3d = theta3*180/pi
alpha = theta1 + theta2 + theta3 -pi
alphad = alpha*180/pi
z1 = abs(real(s)) + (imag(s)/tan(alpha))
K=(abs(s+p1)*abs(s+p2)*abs(s +p3))/abs(s+z1)
gcgp = zpk([-z1],[-p1 -p2 -p3],K)
tc = feedback(gcgp,1)
step(tc)
print -deps sr79212.eps
Kc = K/5
Kv = (K*z1)/(p2*p3)
1
Time (sec.)
A
mp
li
tu
d
e
Step Response
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.2
0.4
0.6
0.8
1
1.4
1.2
Figure 2: Step resposne of compensated system
We nd that
K
v
= lim
s!0
G
c
G
p
(s)2:29;;
and the system will not trackaramp with anyaccuracy.
2