Solution: 7.9.9.3
R
+
C
G
c
G
p
Σ
-
Referring to Figure 1 wecanwrite
XX
XO
Re(s)
Im(s)
-1-2?3?30
s + 30
s
s + 1
s + 2
Figure 1: Accurate root locus
K
c
=
jsjjs +1jjs +30j
10js +3:26j
:
Then all wehavetodoispick some points along the negativereal axis
between s = ;30 and s = ;3:26. Table 1 summarizes the search. Thus
s -29 -28 -27 -26 -25
K 3.15 6.11 8.87 11.43 13.8
Table 1: SearchforK
c
=13:8
the third pole is close to s = ;25. The following MATLAB dialogue veres
these computations.
EDU>gcgp = zpk([-3.26],[0 -1 -30],138)
Zero/pole/gain:
138 (s+3.26)
--------------
s(s+1) (s+30)
EDU>tc = feedback(gcgp,1)
Zero/pole/gain:
138 (s+3.26)
----------------------
(s+25) (s^2 + 6s + 18)
EDU>
Then the unit step response is
C(s)=
1
s
+
B
s +25
+
M
s +3;j3
+
M
s +3+j3
B = (s +25)C(s) j
s=;25
=
138(s +3:26)
s(s +3;j3)(s+3+j3)
j
s=;25
= 0:2434
M = (s +3+j3)C(s) j
s=;3+j3
=
138(s+3:26)
s(s +25)(s+3+j3)
j
s=;3+j3
= 0:7352
6
;2:5783
Thus
c(t)=[1+0:2434e
;25t
+1:4706e
;3t
cos(3t; 2:5783)]1(t):
The unit step response is shown in Figure 2
Time (sec.)
A
mp
lit
u
d
e
Step Response
0 0.5 1 1.5 2 2.5 3
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Figure 2: Unit step response