Solution: 7.9.9.12
R
+
C
G
c
G
p
Σ
-
Figure 1: Cascade Compensation with UnityFeedback
For the system of Figure 1 wehave
G
p
=
1
s(s +3)
Toachieve
t
p
< 0:4sec;;
wemust have
!
d
>
0:4
=7:85! 8rad/sec:
Tokeep PO under 20% wechoose =1=
p
2. The wewishtoplace the poles
at
s = ;8j8:
Wechoose a compensator of the form
G
c
(s)=
K
c
(s +3)(s+ z)
(s + p
1
)
2
Wehavethree degrees of freedom here, so wexa=0.15. Toachieve our
requirements on K
v
our strategy will be to move p towards the origin in
small steps, recalculating p
1
, K
c
and K
v
at eachstep. Welocate the zero
using the angle condition
6
p
1
=
6
(s + z)+pi;
6
(s);
6
(s + p)
2
;;
with s = ;8+j8. The following Matlab program implements this stategy.
p(1)= 0.1
a=0.15
x=0.1
1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0
50
100
150
200
250
Figure 2: Plot of K
v
versus p
kplant=1
dx = 0.005
i=1
s=-8+j*8
while x > 0.001
p(i) = x
alpha(i) = ( angle(s + a) + pi - angle(s) - angle(s + p(i) ) )/ 2;;
p1(i) = 8 + ( 8 / tan(alpha(i) ) );;
k(i) = (abs(s)* abs(s + p(i))*abs(s + p1(i))*abs(s + p1(i)) )/ (kplant*abs(s + a) );;
kv(i) = (kplant*k(i)*a)/((p(i)*p1(i)^2) );;
ess(i) = 1 / kv(i);;
i=i+1
x=x-dx
end
Figure 2 show K
v
as a function of p, the magnitude of the pole introduced
near the origin. The following Matlab dialogue generates the compensator
G
c
(s)=
5003(s+0:15)(s+3)
(s +27:41)
2
;;
2
and the step and ramp responses shown in Figures 3 and 4.
EDU>kv(2)
ans =
1.051560162494277e+01
EDU>p(2)
ans =
9.500000000000000e-02
EDU>p1(2)
ans =
2.740945177471859e+01
EDU>k(2)
ans =
5.003422410091059e+03
EDU>g = zpk([-0.15],[0 -0.095 -27.41 -27.41], 5003)
Zero/pole/gain:
5003 (s+0.15)
-----------------------
s(s+0.095) (s+27.41)^2
EDU>h = 1
h=
1
EDU>tc = feedback(g,h)
3
Time (sec.)
Amplitude
Step Response
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Figure 3: Step Response of Compensated System
Zero/pole/gain:
5003 (s+0.15)
--------------------------------------
(s+38.76) (s+0.1513) (s^2 + 16s + 128)
EDU>step(tc,2)
EDU>print -deps missrollstep.eps
EDU>t = 0:0.01:4;;
EDU>u = t;;
EDU>lsim(tc,u,t)
EDU>print -deps missrollramp.eps
The root locus is shown in Figure 5 This solution is more than adequate,
but it requires a large gain.
4
Time (sec.)
Amplitude
Linear Simulation Results
0 0.5 1 1.5 2 2.5 3 3.5 4
0
0.5
1
1.5
2
2.5
3
3.5
4
Figure 4: Ramp Response of Compensated System
5
-35 -30 -25 -20 -15 -10 -5 0
-8
-6
-4
-2
0
2
4
6
8
Real Axis
Imag Axis
Figure 5: Root locus of Compenstated System
6