Solution: 7.9.9.2
R
+
C
G
c
G
p
Σ
-
Referring to Figure 1 Wehave the angle condition
3
= +180
;
1
;
2
= 108:43
+180
; 135
;123:69
= 29:74
:
Then
p
1
=3+
3
tan27:74
=8:25
The gain is
K
c
=
jsjjs +1jjs +8;;25j
10js +2j
j
s=;3+j3
= 2:95
Then
K
v
=
10K
c
2
1 8:25
= 7:09;;
XX
XO
Re(s)
Im(s)
-1-p -2
θ
α 1
θ
2θ
3
?3
3
Figure 1: Accurate root locus
1
and
e
ss
(ramp)=
1
K
v
=0:141:
If werepeat this process for a zero at s = ;3:3, weget
3
= +180
;
1
;
2
= 84:29
+180
;135
; 123:69
= 5:6
:
Then
p
1
=3+
3
tan5:6
=33:6
The gain is
K
c
=
jsjjs +1jjs +33:6j
10js +3:3j
j
s=;3+j3
= 15:6
Then
K
v
=
10 K
c
3:3
1 33:6
= 15:32;;
and
e
ss
(ramp)=
1
K
v
=0:065:
For the compensator determined in Example 7.3.1 wehave
K
v
=
107:8 3
118
=13;;
and
e
ss
=0:0769
Thus, as wemovethezero to the left wegetasmaller steady error, but the
price wepayishigher gain.
2