ISSN: 1524-4539
Copyright ? 2005 American Heart Association. All rights reserved. Print ISSN: 0009-7322. Online
72514
Circulation is published by the American Heart Association. 7272 Greenville Avenue, Dallas, TX
DOI: 10.1161/CIRCULATIONAHA.105.166570
2005;112;150-153; originally published online Nov 28, 2005; Circulation
Part 10.8: Cardiac Arrest Associated With Pregnancy
http://circ.ahajournals.org/cgi/content/full/112/24_suppl/IV-150
located on the World Wide Web at:
The online version of this article, along with updated information and services, is
http://www.lww.com/static/html/reprints.html
Reprints: Information about reprints can be found online at
journalpermissions@lww.com
Street, Baltimore, MD 21202-2436. Phone 410-5280-4050. Fax: 410-528-8550. Email:
Permissions: Permissions & Rights Desk, Lippincott Williams & Wilkins, 351 West Camden
http://circ.ahajournals.org/subsriptions/
Subscriptions: Information about subscribing to Circulation is online at
by on February 21, 2006 circ.ahajournals.orgDownloaded from
Part 10.8: Cardiac Arrest Associated With Pregnancy
D
uring attempted resuscitation of a pregnant woman,
providers have two potential patients, the mother and
the fetus. The best hope of fetal survival is maternal survival.
For the critically ill patient who is pregnant, rescuers must
provide appropriate resuscitation, with consideration of the
physiologic changes due to pregnancy.
Key Interventions to Prevent Arrest
To treat the critically ill pregnant patient:
●
Place the patient in the left lateral position (see below).
●
Give 100% oxygen.
●
Establish intravenous (IV) access and give a fluid bolus.
●
Consider reversible causes of cardiac arrest and identify
any preexisting medical conditions that may be complicat-
ing the resuscitation.
Resuscitation of the Pregnant Woman in
Cardiac Arrest
Modifications of Basic Life Support
Several modifications to standard BLS approaches are appro-
priate for the pregnant woman in cardiac arrest (Table). At a
gestational age of 20 weeks and beyond, the pregnant uterus
can press against the inferior vena cava and the aorta,
impeding venous return and cardiac output. Uterine obstruc-
tion of venous return can produce prearrest hypotension or
shock and in the critically ill patient may precipitate arrest.
1,2
In cardiac arrest the compromise in venous return and cardiac
output by the gravid uterus limits the effectiveness of chest
compressions. The gravid uterus may be shifted away from
the inferior vena cava and the aorta by placing the patient 15°
to 30° back from the left lateral position (Class IIa) or by
pulling the gravid uterus to the side.
3
This may be accom-
plished manually or by placement of a rolled blanket or other
object under the right hip and lumbar area. Other modifica-
tions are discussed below.
●
Airway and breathing
– Hormonal changes promote insufficiency of the gastro-
esophageal sphincter, increasing the risk of regurgita-
tion. Apply continuous cricoid pressure during positive-
pressure ventilation for any unconscious pregnant
woman.
●
Circulation
– Perform chest compressions higher on the sternum,
slightly above the center of the sternum. This will adjust
for the elevation of the diaphragm and abdominal con-
tents caused by the gravid uterus.
4
●
Defibrillation
– Defibrillate using standard ACLS defibrillation doses
(Class IIa).
5
Review the ACLS Pulseless Arrest Algo-
rithm (see Part 7.2: “Management of Cardiac Arrest”).
There is no evidence that shocks from a direct current
defibrillator have adverse effects on the heart of the
fetus.
– If fetal or uterine monitors are in place, remove them
before delivering shocks.
Modifications of Advanced Cardiovascular
Life Support
The treatments listed in the standard ACLS Pulseless Arrest
Algorithm, including recommendations and doses for defi-
brillation, medications, and intubation, apply to cardiac arrest
in the pregnant woman (see the Table). There are important
considerations to keep in mind, however, about airway,
breathing, circulation, and the differential diagnosis.
●
Airway
– Secure the airway early in resuscitation. Because of the
potential for gastroesophageal sphincter insufficiency
with an increased risk of regurgitation, use continuous
cricoid pressure before and during attempted endotra-
cheal intubation.
– Be prepared to use an endotracheal tube 0.5 to 1 mm
smaller in internal diameter than that used for a nonpreg-
nant woman of similar size because the airway may be
narrowed from edema.
6
●
Breathing
– Pregnant patients can develop hypoxemia rapidly be-
cause they have decreased functional residual capacity
and increased oxygen demand, so rescuers should be
prepared to support oxygenation and ventilation.
– Verify correct endotracheal tube placement using clini-
cal assessment and a device such as an exhaled CO
2
detector. In late pregnancy the esophageal detector
device is more likely to suggest esophageal placement
(the aspirating bulb does not reinflate after compression)
when the tube is actually in the trachea. This could lead
to the removal of a properly placed endotracheal tube.
– Ventilation volumes may need to be reduced because the
mother’s diaphragm is elevated.
●
Circulation
– Follow the ACLS guidelines for resuscitation
medications.
– Vasopressor agents such as epinephrine, vasopressin,
and dopamine will decrease blood flow to the uterus.
There are no alternatives, however, to using all indicated
medications in recommended doses. The mother must be
resuscitated or the chances of fetal resuscitation vanish.
●
Differential diagnoses. The same reversible causes of
cardiac arrest that occur in nonpregnant women can occur
during pregnancy. But providers should be familiar with
(Circulation. 2005;112:IV-150-IV-153.)
? 2005 American Heart Association.
This special supplement to Circulation is freely available at
http://www.circulationaha.org
DOI: 10.1161/CIRCULATIONAHA.105.166570
IV-150
pregnancy-specific diseases and procedural complications.
Providers should try to identify these common and revers-
ible causes of cardiac arrest in pregnancy during resusci-
tation attempts.
7
The use of abdominal ultrasound by a
skilled operator should be considered in detecting preg-
nancy and possible causes of the cardiac arrest, but this
should not delay other treatments.
– Excess magnesium sulfate. Iatrogenic overdose is possi-
ble in women with eclampsia who receive magnesium
sulfate, particularly if the woman becomes oliguric.
Administration of calcium gluconate (1 ampule or 1 g) is
the treatment of choice for magnesium toxicity. Empiric
calcium administration may be lifesaving.
8,9
– Acute coronary syndromes. Pregnant women may expe-
rience acute coronary syndromes, typically in association
with other medical conditions. Because fibrinolytics are
relatively contraindicated in pregnancy, percutaneous
coronary intervention is the reperfusion strategy of
choice for ST-elevation myocardial infarction.
10
– Pre-eclampsia/eclampsia. Pre-eclampsia/eclampsia de-
velops after the 20th week of gestation and can produce
severe hypertension and ultimate diffuse organ system
Primary and Secondary ABCD Surveys: Modifications for Pregnant Women
ACLS Approach Modifications to BLS and ACLS Guidelines
Primary ABCD Survey Airway
● No modifications.
Breathing
● No modifications.
Circulation
● Place the woman on her left side with her back angled 15° to 30° back from the left lateral position. Then start chest
compressions.
or
● Place a wedge under the woman’s right side (so that she tilts toward her left side).
or
● Have one rescuer kneel next to the woman’s left side and pull the gravid uterus laterally. This maneuver will relieve pressure
on the inferior vena cava.
Defibrillation
● No modifications in dose or pad position.
● Defibrillation shocks transfer no significant current to the fetus.
● Remove any fetal or uterine monitors before shock delivery.
Secondary ABCD Survey Airway
● Insert an advanced airway early in resuscitation to reduce the risk of regurgitation and aspiration.
● Airway edema and swelling may reduce the diameter of the trachea. Be prepared to use a tracheal tube that is slightly
smaller than the one you would use for a nonpregnant woman of similar size.
● Monitor for excessive bleeding following insertion of any tube into the oropharynx or nasopharynx.
● No modifications to intubation techniques. A provider experienced in intubation should insert the tracheal tube.
● Effective preoxygenation is critical because hypoxia can develop quickly.
● Rapid sequence intubation with continuous cricoid pressure is the preferred technique.
● Agents for anesthesia or deep sedation should be selected to minimize hypotension.
Breathing
● No modifications of confirmation of tube placement. Note that the esophageal detector device may suggest esophageal
placement despite correct tracheal tube placement.
● The gravid uterus elevates the diaphragm:
—Patients can develop hypoxemia if either oxygen demand or pulmonary function is compromised. They have less reserve because
functional residual capacity and functional residual volume are decreased. Minute ventilation and tidal volume are increased.
—Tailor ventilatory support to produce effective oxygenation and ventilation.
Circulation
● Follow standard ACLS recommendations for administration of all resuscitation medications.
● Do not use the femoral vein or other lower extremity sites for venous access. Drugs administered through these sites may not
reach the maternal heart unless or until the fetus is delivered.
Differential Diagnosis and Decisions
● Decide whether to perform emergency hysterotomy.
● Identify and treat reversible causes of the arrest. Consider causes related to pregnancy and causes considered for all ACLS
patients (see the 6 H’s and 6 T’s, in Part 7.2: “Management of Cardiac Arrest”).
Part 10.8: Cardiac Arrest Associated With Pregnancy IV-151
failure. If untreated it may result in maternal and fetal
morbidity and mortality.
– Aortic dissection. Pregnant women are at increased risk
for spontaneous aortic dissection.
– Life-threatening pulmonary embolism and stroke. Suc-
cessful use of fibrinolytics for a massive, life-threatening
pulmonary embolism
11–13
and ischemic stroke
14
have
been reported in pregnant women.
– Amniotic fluid embolism. Clinicians have reported suc-
cessful use of cardiopulmonary bypass for women with
life-threatening amniotic fluid embolism during labor
and delivery.
15
– Trauma and drug overdose. Pregnant women are not
exempt from the accidents and mental illnesses that
afflict much of society. Domestic violence also increases
during pregnancy; in fact, homicide and suicide are
leading causes of mortality during pregnancy.
6,7
Emergency Hysterotomy (Cesarean Delivery) for
the Pregnant Woman in Cardiac Arrest
Maternal Cardiac Arrest Not Immediately Reversed by
BLS and ACLS
The resuscitation team leader should consider the need for an
emergency hysterotomy (cesarean delivery) protocol as soon
as a pregnant woman develops cardiac arrest.
4,16–18
The best
survival rate for infants H1102224 to 25 weeks in gestation occurs
when the delivery of the infant occurs no more than 5 minutes
after the mother’s heart stops beating.
16,19–21
This typically
requires that the provider begin the hysterotomy about 4
minutes after cardiac arrest.
Emergency hysterotomy is an aggressive procedure. It may
seem counterintuitive given that the key to salvage of a
potentially viable infant is resuscitation of the mother.
6,10,22–24
But the mother cannot be resuscitated until venous return and
aortic output are restored. Delivery of the baby empties the
uterus, relieving both the venous obstruction and the aortic
compression. The hysterotomy also allows access to the
infant so that newborn resuscitation can begin.
The critical point to remember is that you will lose both
mother and infant if you cannot restore blood flow to the
mother’s heart.
4,18,25,26
Note that 4 to 5 minutes is the
maximum time rescuers will have to determine if the arrest
can be reversed by BLS and ACLS interventions. The rescue
team is not required to wait for this time to elapse before
initiating emergency hysterotomy.
27
Recent reports document
long intervals between an urgent decision for hysterotomy
and actual delivery of the infant, far exceeding the obstetrical
guideline of 30 minutes.
28,29
Establishment of IV access and an advanced airway typi-
cally requires several minutes. In most cases the actual
cesarean delivery cannot proceed until after administration of
IV medications and endotracheal intubation. Resuscitation
team leaders should activate the protocol for an emergency
cesarean delivery as soon as cardiac arrest is identified in the
pregnant woman. By the time the team leader is poised to
deliver the baby, IV access has been established, initial
medications have been administered, an advanced airway is
in place, and the immediate reversibility of the cardiac arrest
has been determined.
Decision Making for Emergency Hysterotomy
The resuscitation team should consider several maternal and
fetal factors in determining the need for an emergency
hysterotomy.
●
Consider gestational age. Although the gravid uterus
reaches a size that will begin to compromise aortocaval
blood flow at approximately 20 weeks of gestation, fetal
viability begins at approximately 24 to 25 weeks. Portable
ultrasonography, available in some emergency depart-
ments, may aid in determination of gestational age (in
experienced hands) and positioning. However, the use of
ultrasound should not delay the decision to perform emer-
gency hysterotomy.
30
– Gestational age H1102120 weeks. Urgent cesarean delivery
need not be considered because a gravid uterus of this
size is unlikely to significantly compromise maternal
cardiac output.
– Gestational age approximately 20 to 23 weeks. Perform
an emergency hysterotomy to enable successful resusci-
tation of the mother, not the survival of the delivered
infant, which is unlikely at this gestational age.
– Gestational age approximately H1135024 to 25 weeks. Per-
form an emergency hysterotomy to save the life of both
the mother and the infant.
●
Consider features of the cardiac arrest. The following
features of the cardiac arrest can increase the infant’s
chance for survival:
– Short interval between the mother’s arrest and the
infant’s delivery
19
– No sustained prearrest hypoxia in the mother
– Minimal or no signs of fetal distress before the mother’s
cardiac arrest
31
– Aggressive and effective resuscitative efforts for the
mother
– The hysterotomy is performed in a medical center with a
neonatal intensive care unit
●
Consider the professional setting.
– Are appropriate equipment and supplies available?
– Is emergency hysterotomy within the rescuer’s proce-
dural range of experience and skills?
– Are skilled neonatal/pediatric support personnel avail-
able to care for the infant, especially if the infant is not
full term?
– Are obstetric personnel immediately available to support
the mother after delivery?
Advance Preparation
Experts and organizations have emphasized the importance of
advance preparation.
4,18,26
Medical centers must review
whether performance of an emergency hysterotomy is feasi-
ble at their center, and if so, they must identify the best means
of rapidly accomplishing this procedure. The plans should be
made in collaboration with the obstetric and pediatric
services.
Summary
Successful resuscitation of a pregnant woman and survival of
the fetus require prompt and excellent CPR with some
modifications in basic and advanced cardiovascular life
IV-152 Circulation December 13, 2005
support techniques. By the 20th week of gestation, the gravid
uterus can compress the inferior vena cava and the aorta,
obstructing venous return and arterial blood flow. Rescuers
can relieve this compression by positioning the woman on her
side or by pulling the gravid uterus to the side. Defibrillation
and medication doses used for resuscitation of the pregnant
woman are the same as those used for other adults in pulseless
arrest. Rescuers should consider the need for emergency
hysterotomy as soon as the pregnant woman develops cardiac
arrest because rescuers should be prepared to proceed with
the hysterotomy if the resuscitation is not successful within
minutes.
References
1. Page-Rodriguez A, Gonzalez-Sanchez JA. Perimortem cesarean section
of twin pregnancy: case report and review of the literature. Acad Emerg
Med. 1999;6:1072–1074.
2. Cardosi RJ, Porter KB. Cesarean delivery of twins during maternal
cardiopulmonary arrest. Obstet Gynecol. 1998;92:695–697.
3. Goodwin AP, Pearce AJ. The human wedge. A manoeuvre to relieve
aortocaval compression during resuscitation in late pregnancy. Anaes-
thesia. 1992;47:433–434.
4. Morris S, Stacey M. Resuscitation in pregnancy. BMJ. 2003;327:
1277–1279.
5. Nanson J, Elcock D, Williams M, Deakin CD. Do physiological changes
in pregnancy change defibrillation energy requirements? Br J Anaesth.
2001;87:237–239.
6. Johnson MD, Luppi CJ, Over DC. Cardiopulmonary Resuscitation. In:
Gambling DR, Douglas MJ, eds. Obstetric Anesthesia and Uncommon
Disorders. Philadelphia: WB Saunders; 1998:51–74.
7. Department of Health, Welsh Office, Scottish Office Department of
Health, Department of Health and Social Services, Northern Ireland. Why
mothers die. Report on confidential enquiries into maternal deaths in the
United Kingdom 2000–2002. London, England: The Stationery Office;
2004.
8. Poole JH, Long J. Maternal mortality—a review of current trends. Crit
Care Nurs Clin North Am. 2004;16:227–230.
9. Munro PT. Management of eclampsia in the accident and emergency
department. J Accid Emerg Med. 2000;17:7–11.
10. Doan-Wiggins L. Resuscitation of the pregnant patient suffering sudden
death. In: Paradis NA, Halperin HR, Nowak RM, eds. Cardiac Arrest:
The Science and Practice of Resuscitation Medicine. Baltimore, Md:
Williams & Wilkins; 1997:812–819.
11. Turrentine MA, Braems G, Ramirez MM. Use of thrombolytics for the
treatment of thromboembolic disease during pregnancy. Obstet Gynecol
Surv. 1995;50:534–541.
12. Thabut G, Thabut D, Myers RP, Bernard-Chabert B, Marrash-Chahla R,
Mal H, Fournier M. Thrombolytic therapy of pulmonary embolism: a
meta-analysis. J Am Coll Cardiol. 2002;40:1660–1667.
13. Patel RK, Fasan O, Arya R. Thrombolysis in pregnancy. Thromb
Haemost. 2003;90:1216–1217.
14. Dapprich M, Boessenecker W. Fibrinolysis with alteplase in a pregnant
woman with stroke. Cerebrovasc Dis. 2002;13:290.
15. Stanten RD, Iverson LI, Daugharty TM, Lovett SM, Terry C, Blu-
menstock E. Amniotic fluid embolism causing catastrophic pulmonary
vasoconstriction: diagnosis by transesophageal echocardiogram and
treatment by cardiopulmonary bypass. Obstet Gynecol. 2003;102:
496–498.
16. Katz VL, Dotters DJ, Droegemueller W. Perimortem cesarean delivery.
Obstet Gynecol. 1986;68:571–576.
17. American Heart Association in collaboration with International Liaison
Committee on Resuscitation. Guidelines 2000 for Cardiopulmonary
Resuscitation and Emergency Cardiovascular Care: International Con-
sensus on Science, Part 8: Advanced Challenges in Resuscitation: Section
3: Advanced Challenges in ECC. Circulation. 2000;102(suppl
I):I229–I252.
18. Cummins RO, Hazinski MF, Zelop CM. Cardiac Arrest Associated with
Pregnancy. In: Cummins R, Hazinski M, Field J, eds. ACLS—The Ref-
erence Textbook. Dallas: American Heart Association; 2003:143–158.
19. Oates S, Williams GL, Rees GA. Cardiopulmonary resuscitation in late
pregnancy. BMJ. 1988;297:404–405.
20. Strong THJ, Lowe RA. Perimortem cesarean section. Am J Emerg Med.
1989;7:489–494.
21. Boyd R, Teece S. Towards evidence based emergency medicine: best
BETs from the Manchester Royal Infirmary. Perimortem caesarean
section. Emerg Med J. 2002;19:324–325.
22. Datner EM, Promes SB. Resuscitation issues in pregnancy. In: Rosen P,
Barkin R, eds. Emergency Medicine: Concepts and Clinical Practice. 4th
ed. St Louis, Mo: Mosby; 1998:71–76.
23. Whitten M, Irvine LM. Postmortem and perimortem caesarean section:
what are the indications? J R Soc Med. 2000;93:6–9.
24. Kupas DF, Harter SC, Vosk A. Out-of-hospital perimortem cesarean
section. Prehosp Emerg Care. 1998;2:206–208.
25. Lanoix R, Akkapeddi V, Goldfeder B. Perimortem cesarean section: case
reports and recommendations. Acad Emerg Med. 1995;2:1063–1067.
26. Part 8: advanced challenges in resuscitation. Section 3: special challenges
in ECC. 3F: cardiac arrest associated with pregnancy. European Resus-
citation Council. Resuscitation. 2000;46:293–295.
27. Stallard TC, Burns B. Emergency delivery and perimortem C-section.
Emerg Med Clin North Am. 2003;21:679–693.
28. MacKenzie IZ, Cooke I. What is a reasonable time from decision-to-
delivery by caesarean section? Evidence from 415 deliveries. BJOG.
2002;109:498–504.
29. Helmy WH, Jolaoso AS, Ifaturoti OO, Afify SA, Jones MH. The
decision-to-delivery interval for emergency caesarean section: is 30
minutes a realistic target? BJOG. 2002;109:505–508.
30. Moore C, Promes SB. Ultrasound in pregnancy. Emerg Med Clin North
Am. 2004;22:697–722.
31. Morris JA Jr, Rosenbower TJ, Jurkovich GJ, Hoyt DB, Harviel JD,
Knudson MM, Miller RS, Burch JM, Meredith JW, Ross SE, Jenkins JM,
Bass JG. Infant survival after cesarean section for trauma. Ann Surg.
1996;223:481–488; discussion 488–491.
Part 10.8: Cardiac Arrest Associated With Pregnancy IV-153