ISSN: 1524-4539 Copyright ? 2005 American Heart Association. All rights reserved. Print ISSN: 0009-7322. Online 72514 Circulation is published by the American Heart Association. 7272 Greenville Avenue, Dallas, TX DOI: 10.1161/CIRCULATIONAHA.105.166552 2005;112;12-18; originally published online Nov 28, 2005; Circulation Part 3: Overview of CPR http://circ.ahajournals.org/cgi/content/full/112/24_suppl/IV-12 located on the World Wide Web at: The online version of this article, along with updated information and services, is http://www.lww.com/static/html/reprints.html Reprints: Information about reprints can be found online at journalpermissions@lww.com Street, Baltimore, MD 21202-2436. Phone 410-5280-4050. Fax: 410-528-8550. Email: Permissions: Permissions & Rights Desk, Lippincott Williams & Wilkins, 351 West Camden http://circ.ahajournals.org/subsriptions/ Subscriptions: Information about subscribing to Circulation is online at by on February 21, 2006 circ.ahajournals.orgDownloaded from Part 3: Overview of CPR W e have always known that CPR is not a single skill but a series of assessments and interventions. More recently we have become aware that cardiac arrest is not a single problem and that the steps of CPR may need to vary depending on the type or etiology of the cardiac arrest. At the 2005 Consensus Conference researchers debated all aspects of detection and treatment of cardiac arrest. Yet the last summation returned to the beginning question: how do we get more bystanders and healthcare providers to learn CPR and perform it well? Epidemiology Sudden cardiac arrest (SCA) is a leading cause of death in the United States and Canada. 1–3 Although estimates of the annual number of deaths due to out-of-hospital SCA vary widely, 1,2,4,5 data from the Centers for Disease Control and Prevention estimates that in the United States approximately 330 000 people die annually in the out-of-hospital and emer- gency department settings from coronary heart disease. About 250 000 of these deaths occur in the out-of-hospital setting. 1,6 The annual incidence of SCA in North America is H110150.55 per 1000 population. 3,4 Cardiac Arrest and the Chain of Survival Most victims of SCA demonstrate ventricular fibrillation (VF) at some point in their arrest. 3–5 Several phases of VF have been described, 7 and resuscitation is most successful if defibrillation is performed in about the first 5 minutes after collapse. Because the interval between call to the emergency medical services (EMS) system and arrival of EMS personnel at the victim’s side is typically longer than 5 minutes, 8 achieving high survival rates depends on a public trained in CPR and on well-organized public access defibrillation programs. 9,10 The best results of lay rescuer CPR and automated external defibrillation programs have occurred in controlled environments, with trained, moti- vated personnel, a planned and practiced response, and short response times. Examples of such environments are airports, 9 airlines, 11 casinos, 12 and hospitals (see Part 4: “Adult Basic Life Support”). Significant improvement in survival from out-of- hospital VF SCA also has been reported in well-organized police CPR and AED rescuer programs. 13 CPR is important both before and after shock delivery. When performed immediately after collapse from VF SCA, CPR can double or triple the victim’s chance of survival. 14–17 CPR should be provided until an automated external defibril- lator (AED) or manual defibrillator is available. After about 5 minutes of VF with no treatment, outcome may be better if shock delivery (attempted defibrillation) is preceded by a period of CPR with effective chest compressions that deliver some blood to the coronary arteries and brain. 18,19 CPR is also important immediately after shock delivery; most victims demonstrate asystole or pulseless electrical activity (PEA) for several minutes after defibrillation. CPR can convert these rhythms to a perfusing rhythm. 20–22 Not all adult deaths are due to SCA and VF. An unknown number have an asphyxial mechanism, as in drowning or drug overdose. Asphyxia is also the mechanism of cardiac arrest in most children, although about 5% to 15% have VF. 23–25 Studies in animals have shown that the best results for resuscitation from asphyxial arrest are obtained by a combi- nation of chest compressions and ventilations, although chest compressions alone are better than doing nothing. 26,27 Differences in CPR Recommendations by Age of Victim and Rescuer Simplification The authors of the 2005 AHA Guidelines for CPR and ECC simplified the BLS sequences, particularly for lay rescuers, to minimize differences in the steps and techniques of CPR used for infant, child, and adult victims. For the first time, a universal compression-ventilation ratio (30:2) is recom- mended for all single rescuers of infant, child, and adult victims (excluding newborns). Some skills (eg, rescue breathing without chest compres- sions) will no longer be taught to lay rescuers. The goal of these changes is to make CPR easier for all rescuers to learn, remember, and perform. Differences in CPR for Lay Rescuers and Healthcare Providers Differences between lay rescuer and healthcare provider CPR skills include the following: ● Lay rescuers should immediately begin cycles of chest compressions and ventilations after delivering 2 rescue breaths for an unresponsive victim. Lay rescuers are not taught to assess for pulse or signs of circulation for an unresponsive victim. ● Lay rescuers will not be taught to provide rescue breathing without chest compressions. ● The lone healthcare provider should alter the sequence of rescue response based on the most likely etiology of the victim’s problem. — For sudden, collapse in victims of all ages, the lone healthcare provider should telephone the emergency response number and get an AED (when readily avail- able) and then return to the victim to begin CPR and use the AED. — For unresponsive victims of all ages with likely asphyx- ial arrest (eg, drowning) the lone healthcare provider should deliver about 5 cycles (about 2 minutes) of CPR before leaving the victim to telephone the emergency response number and get the AED. The rescuer should (Circulation. 2005;112:IV-12-IV-18.) ? 2005 American Heart Association. This special supplement to Circulation is freely available at http://www.circulationaha.org DOI: 10.1161/CIRCULATIONAHA.105.166552 IV-12 then return to the victim, begin the steps of CPR, and use the AED. ● After delivery of 2 rescue breaths, healthcare providers should attempt to feel a pulse in the unresponsive, non- breathing victim for no more than 10 seconds. If the provider does not definitely feel a pulse within 10 seconds, the provider should begin cycles of chest compressions and ventilations. ● Healthcare providers will be taught to deliver rescue breaths without chest compressions for the victim with respiratory arrest and a perfusing rhythm (ie, pulses). Rescue breaths without chest compressions should be delivered at a rate of about 10 to 12 breaths per minute for the adult and a rate of about 12 to 20 breaths per minute for the infant and child. ● Healthcare providers should deliver cycles of compres- sions and ventilations during CPR when there is no advanced airway (eg, endotracheal tube, laryngeal mask airway [LMA], or esophageal-tracheal combitube [Combi- tube]) in place. Once an advanced airway is in place for infant, child, or adult victims, 2 rescuers no longer deliver “cycles” of compressions interrupted with pauses for ven- tilation. Instead, the compressing rescuer should deliver 100 compressions per minute continuously, without pauses for ventilation. The rescuer delivering the ventilations should give 8 to 10 breaths per minute and should be careful to avoid delivering an excessive number of venti- lations. The 2 rescuers should change compressor and ventilator roles approximately every 2 minutes to prevent compressor fatigue and deterioration in quality and rate of chest compressions. When multiple rescuers are present, they should rotate the compressor role about every 2 minutes. The switch should be accomplished as quickly as possible (ideally in less than 5 seconds) to minimize interruptions in chest compressions. Age Delineation Differences in the etiology of cardiac arrest between child and adult victims necessitate some differences in the recom- mended resuscitation sequence for infant and child victims compared with the sequence used for adult victims. Because there is no single anatomic or physiologic characteristic that distinguishes a “child” victim from an “adult” victim and no scientific evidence that identifies a precise age to initiate adult rather than child CPR techniques, the ECC scientists made a consensus decision for age delineation that is based largely on practical criteria and ease of teaching. In these 2005 guidelines the recommendations for newborn CPR apply to newborns in the first hours after birth until the newborn leaves the hospital. Infant CPR guidelines apply to victims less than approximately 1 year of age. Child CPR guidelines for the lay rescuer apply to children about 1 to 8 years of age, and adult guidelines for the lay rescuer apply to victims about 8 years of age and older. To simplify learning for lay rescuers retraining in CPR and AED apropos the 2005 guidelines, the same age divisions for children are used in the 2005 guidelines as in the ECC Guidelines 2000. 28 Child CPR guidelines for healthcare providers apply to victims from about 1 year of age to the onset of adolescence or puberty (about 12 to 14 years of age) as defined by the presence of secondary sex characteristics. Hospitals (partic- ularly children’s hospitals) or pediatric intensive care units may choose to extend the use of Pediatric Advanced Life Support (PALS) guidelines to pediatric patients of all ages (generally up to about 16 to 18 years of age) rather than use onset of puberty for the application of ACLS versus PALS guidelines. Use of AED and Defibrillation for the Child When treating a child found in cardiac arrest in the out-of- hospital setting, lay rescuers and healthcare providers should provide about 5 cycles (about 2 minutes) of CPR before attaching an AED. This recommendation is consistent with the recommendation published in 2003. 29 As noted above, most cardiac arrests in children are not caused by ventricular arrhythmias. Immediate attachment and operation of an AED (with hands-off time required for rhythm analysis) will delay or interrupt provision of rescue breathing and chest compres- sions for victims who are most likely to benefit from them. If a healthcare provider witnesses a sudden collapse of a child, the healthcare provider should use an AED as soon as it is available. There is no recommendation for or against the use of AEDs for infants (H110211 year of age). Rescuers should use a pediatric dose-attenuating system, when available, for children 1 to 8 years of age. These pediatric systems are designed to deliver a reduced shock dose that is appropriate for victims up to about 8 years of age (about 25 kg [55 pounds] in weight or about 127 cm [50 inches] in length). A conventional AED (without pediatric attenuator system) should be used for children about 8 years of age and older (larger than about 25 kg [55 pounds] in weight or about 127 cm [50 inches] in length) and for adults. A pediatric attenuating system should not be used for victims 8 years of age and older because the energy dose (ie, shock) delivered through the pediatric system is likely to be inade- quate for an older child, adolescent, or adult. For in-hospital resuscitation, rescuers should begin CPR immediately and use an AED or manual defibrillator as soon as it is available. If a manual defibrillator is used, a defibril- lation dose of 2 J/kg is recommended for the first shock and a dose of 4 J/kg for the second and subsequent shocks. Sequence If more than one person is present at the scene of a cardiac arrest, several actions can occur simultaneously. One or more trained rescuers should remain with the victim to begin the steps of CPR while another bystander phones the emergency response system and retrieves an AED (if available). If a lone rescuer is present, then the sequences of actions described below are recommended. These sequences are described in more detail in Part 4: “Adult Basic Life Support,” Part 5: “Electrical Therapies,” and Part 11: “Pediatric Basic Life Support.” For the unresponsive adult, the lay rescuer sequence of action is as follows: Part 3: Overview of CPR IV-13 ● The lone rescuer should telephone the emergency response system and retrieve an AED (if available). The rescuer should then return to the victim to begin CPR and use the AED when appropriate. ● The lay rescuer should open the airway and check for normal breathing. If no normal breathing is detected, the rescuer should give 2 rescue breaths. ● Immediately after delivery of the rescue breaths, the rescuer should begin cycles of 30 chest compressions and 2 ventilations and use an AED as soon as it is available. For the unresponsive infant or child, the lay rescuer sequence for action is as follows: ● The rescuer will open the airway and check for breathing; if no breathing is detected, the rescuer should give 2 breaths that make the chest rise. ● The rescuer should provide 5 cycles (a cycle is 30 com- pressions and 2 breaths) of CPR (about 2 minutes) before leaving the pediatric victim to phone 911 and get an AED for the child if available. The reasons for immediate provision of CPR are that asphyxial arrest (including primary respiratory arrest) is more common than sudden cardiac arrest in children, and the child is more likely to respond to, or benefit from, the initial CPR. In general, the rescue sequence performed by the health- care provider is similar to that recommended for the lay rescuer, with the following differences: ● If the lone healthcare provider witnesses the sudden col- lapse of a victim of any age, after verifying that the victim is unresponsive the provider should first phone 911 and get an AED if available, then begin CPR and use the AED as appropriate. Sudden collapse is more likely to be caused by an arrhythmia that may require shock delivery. ● If the lone healthcare provider is rescuing an unresponsive victim with a likely asphyxial cause of arrest (eg, drown- ing), the rescuer should provide 5 cycles (about 2 minutes) of CPR (30 compressions and 2 ventilations) before leav- ing the victim to phone the emergency response number. ● As noted above, the healthcare provider will perform some skills and steps that are not taught to the lay rescuer. Checking Breathing and Rescue Breaths Checking Breathing When lay rescuers check breathing in the unresponsive adult victim, they should look for normal breathing. This should help the lay rescuer distinguish between the victim who is breathing (and does not require CPR) and the victim with agonal gasps (who is likely in cardiac arrest and needs CPR). Lay rescuers who check breathing in the infant or child should look for the presence or absence of breathing. Infants and children often demonstrate breathing patterns that are not normal but are adequate. The healthcare provider should assess for adequate breath- ing in the adult. Some patients will demonstrate inadequate breathing that requires delivery of assisted ventilation. As- sessment of ventilation in the infant and child is taught in the PALS Course. Rescue Breaths Each rescue breath should be delivered in 1 second and should produce visible chest rise. Other new recommenda- tions for rescue breaths are these: ● Healthcare providers should take particular care to provide effective breaths in infants and children because asphyxial arrest is more common than sudden cardiac arrest in infants and children. To ensure that a rescue breath is effective, it may be necessary to reopen the airway and reattempt ventilation. The rescuer may need to try a couple of times to deliver 2 effective breaths for the infant and child. ● When rescue breaths are provided without chest compres- sions to the victim with a pulse, the healthcare provider should deliver 12 to 20 breaths per minute for an infant or child and 10 to 12 breaths per minute for an adult. ● As noted above, once an advanced airway is in place (eg, endotracheal tube, Combitube, LMA) during 2-rescuer CPR, the compressor should provide 100 compressions per minute without pausing for ventilation, and the rescuer delivering breaths should deliver 8 to 10 breaths per minute. Chest Compressions Both lay rescuers and healthcare providers should deliver chest compressions that depress the chest of the infant and child by one third to one half the depth of the chest. Rescuers should push hard, push fast (rate of 100 compressions per minute), allow complete chest recoil between compressions, and minimize interruptions in compressions for all victims. Because children and rescuers can vary widely in size, rescuers are no longer instructed to use a single hand for chest compression of all children. Instead the rescuer is instructed to use 1 hand or 2 hands (as in the adult) as needed to compress the child’s chest to one third to one half its depth. Lay rescuers should use a 30:2 compression-ventilation ratio for all (infant, child, and adult) victims. Healthcare pro- viders should use a 30:2 compression-ventilation ratio for all 1-rescuer and all adult CPR and should use a 15:2 compression- ventilation ratio for infant and child 2-rescuer CPR. For the Infant Recommendations for lay rescuer and healthcare provider chest compressions for infants (up to 1 year of age) include the following: ● Lay rescuers and healthcare providers should compress the infant chest just below the nipple line (on lower half of sternum). ● Lay rescuers will use 2 fingers to compress the infant chest with a compression-ventilation ratio of 30:2. ● The lone healthcare provider should use 2 fingers to compress the infant chest. ● When 2 healthcare providers are performing CPR, the compression-ventilation ratio should be 15:2 until an ad- vanced airway is in place. The healthcare provider who is compressing the chest should, when feasible, use the 2-thumb–encircling hands technique. For the Child Recommendations for lay rescuer and healthcare provider compressions for child victims (about 1 to 8 years of age) include the following: IV-14 Circulation December 13, 2005 ● Lay rescuers should use a 30:2 compression-ventilation ratio for CPR for all victims. ● Rescuers should compress over the lower half of the sternum, at the nipple line (as for adults). ● Lay rescuers should use 1 or 2 hands, as needed, to compress the child’s chest to one third to one half the depth of the chest. ● Lay rescuers and lone healthcare providers should use a compression-ventilation ratio of 30:2. ● Healthcare providers (and all rescuers who complete the healthcare provider course, such as lifeguards) performing 2-rescuer CPR should use a 15:2 compression-ventilation ratio until an advanced airway is in place. For the Adult Recommendations for lay rescuer and healthcare provider chest compressions for adult victims (about 8 years of age and older) include the following: ● The rescuer should compress in the center of the chest at the nipple line. ● The rescuer should compress the chest approximately 1 1 ?2 to 2 inches, using the heel of both hands. Comparison of CPR skills used for adult, child, and infant victims are highlighted in the Table. CPR for Newborns Recommendations for the newborn are different from recom- mendations for infants. Because most providers who care for newborns do not provide care to infants, children, and adults, the educational imperative for universal or more uniform recommendations is less compelling. There are no major changes from the ECC Guidelines 2000 recommendations for CPR in newborns 28 : ● The rescue breathing rate for the newborn infant with pulses is approximately 40 to 60 breaths per minute. ● When providing compressions for newborn infants, the rescuer should compress to one third the depth of the chest. ● For resuscitation of the newborn infant (with or without an advanced airway in place), providers should deliver 90 compressions and 30 ventilations (about 120 events) per minute. ● Rescuers should try to avoid giving simultaneous compres- sions and ventilations. Important Lessons About CPR What have we learned about CPR? To be successful, CPR must be started as soon as a victim collapses, and we must therefore rely on a trained and willing public to initiate CPR and call for professional help and an AED. We have learned that when these steps happen in a timely manner, CPR makes Summary of BLS ABCD Maneuvers for Infants, Children, and Adults (Newborn Information Not Included) Maneuver Adult Lay rescuer: H113508 years HCP: Adolescent and older Child Lay rescuers: 1 to 8 years HCP: 1 year to adolescent Infant Under 1 year of age Airway Head tilt–chin lift (HCP: suspected trauma, use jaw thrust) Breathing Initial 2 breaths at 1 second/breath 2 effective breaths at 1 second/breath HCP: Rescue breathing without chest compressions 10 to 12 breaths/min (approximate) 12 to 20 breaths/min (approximate) HCP: Rescue breaths for CPR with advanced airway 8 to 10 breaths/min (approximately) Foreign-body airway obstruction Abdominal thrusts Back slaps and chest thrusts Circulation HCP: Pulse check (H1134910 sec) Carotid Brachial or femoral Compression landmarks Lower half of sternum, between nipples Just below nipple line (lower half of sternum) Compression method Push hard and fast Allow complete recoil Heel of one hand, other hand on top Heel of one hand or as for adults 2 or 3 fingers HCP (2 rescuers): 2 thumb–encircling hands Compression depth 1 1 ?2 to 2 inches Approximately one third to one half the depth of the chest Compression rate Approximately 100/min Compression-ventilation ratio 30:2 (one or two rescuers) 30:2 (single rescuer) HCP: 15:2 (2 rescuers) Defibrillation AED Use adult pads Do not use child pads Use AED after 5 cycles of CPR (out of hospital). Use pediatric system for child 1 to 8 years if available No recommendation for infants H110211 year of age HCP: For sudden collapse (out of hospital) or in-hospital arrest use AED as soon as available. Note: Maneuvers used by only Healthcare Providers are indicated by “HCP.” Part 3: Overview of CPR IV-15 a difference. 30–32 Sadly we have also learned that bystander CPR is performed in about only a third of witnessed arrests or fewer 31,32 and that when CPR is performed, even by profes- sionals, it is often not done well. Excessive ventilation is provided during CPR for victims with advanced airways, with a resulting decrease in cardiac output 33 ; compressions are interrupted too frequently, 34–37 with a resulting drop in coronary perfusion pressure and worse outcomes 38–40 ; and chest compressions are often too slow and too shallow. These guidelines have addressed issues of CPR quality by stressing good CPR—“push hard, push fast, allow full chest recoil after each compression, and minimize interruptions in chest compressions,” —and by simplifying recommendations to make it easer for lay rescuers and healthcare providers alike to learn, remember, and perform these critical skills. To minimize interruptions, other changes have been made in recommenda- tions regarding CPR and debrillation (see Part 5: Electric Therapies). Why are bystanders reluctant to perform CPR? We don’t have enough data to answer this important question defini- tively, but a number of possible reasons have been suggested: ● Some claim that CPR has been made too complicated with too many steps that tax the memory. In these guidelines we have tried to simplify the steps whenever the science allows it. For example, the compression-ventilation ratio for lay rescuers is now the same for infants, children, and adults, and the same technique can be used for chest compressions for children and adults. ● Some feel that our training methods are inadequate, and skills retention has been shown to decline fairly rapidly after training. 41 The American Heart Association has es- tablished an ECC education subcommittee to find better and more efficient educational methods. We must also try to apply the lessons of self-efficacy from the field of psychology to understand why people with the same knowledge apply it so differently in emergencies. ● Others point out that the public is afraid of transmitted diseases and is reluctant to perform mouth-to-mouth resus- citation. 42–45 The guidelines emphasize that the data shows that transmission of infection is very low. 46 The guidelines encourage anyone who is still concerned about infection to use a barrier device to give ventilations, although simple barrier devices (ie, face shields) may not reduce the risk of bacterial transmission. 47 The guidelines also encourage those who would rather not give mouth-to-mouth ventila- tions to call for help and start chest compressions only. About 10% of newborns require some of the steps of CPR to make a successful transition from uterine to extrauterine life. The Neonatal Resuscitation Program (NRP), which is based on these guidelines, has trained more than 1.75 million providers worldwide. The NRP is used throughout the United States and Canada and in many other countries. The educational challenges for resuscitation of the newborn are quite different from those applying to education of rescuers for response to SCA: because most births in the United States occur in hospitals, resuscitations are performed by healthcare personnel. Quality Improvement Processes for continuous quality improvement are essential for the success of out-of-hospital and in-hospital resuscitation programs. For out-of-hospital resuscitation programs the Utstein Registries provide templates to facilitate outcome monitoring. 48–51 In the United States the Joint Commission for the Accredita- tion of Healthcare Organizations (JCAHO) revised standards for individual in-hospital resuscitation capabilities to include evalu- ation of resuscitation policies, procedures, processes, protocols, equipment, staff training, and outcome review. 52 In 2000 the American Heart Association established the National Registry of Cardiopulmonary Resuscitation (NRCPR) to assist participating hospitals with systematic data collection on resuscitative efforts. 53 The objectives of the registry are to develop a well-defined database to document resuscitation performance of hospitals over time. This informa- tion can establish the baseline performance of a hospital, target its problem areas, and identify opportunities for improvement in data collection and the resuscitation program in general. The registry is also the largest repository of information on in- hospital cardiopulmonary arrest. For further information about the NRCPR, visit the website: www.nrcpr.org. Medical Emergency Teams (METs) The concept of Medical Emergency Teams (METs) has been explored as a method to identify patients at risk and intervene to prevent the development of cardiac arrest. METs studied generally consist of a physician and nurse with critical care training. The team is available at all times, with nurses and other hospital staff authorized to activate the team based on specific calling criteria, following implementation of an education and awareness program. Three supportive before-and-after single center studies (LOE 3) 54–56 documented significant reductions in cardiac arrest rates and improved outcome following cardiac arrest. Two neutral studies (LOE 3) 57,58 documented a trend toward reduction in the rates of adult in-hospital cardiac arrest and improved outcome 57 and a reduction in unplanned ICU admissions. 58 The most recent study, a cluster-randomized controlled trial in 23 hospitals, documented no difference in the composite primary outcome (cardiac arrest, unexpected death, unplanned ICU admission) between 12 hospitals in which a MET system was introduced and 11 hospitals that had no MET system in place (LOE 2). 59 Introduction of a MET system for adult in-hospital patients should be considered, with special attention to details of implementation (eg, composition and availability of the team, calling criteria, education and awareness of hospital staff, and method of team activation). There is insufficient evidence to make a recommendation on the use of a MET for children. Further research is needed about the critical details of implementation and the potential effectiveness of METs in preventing cardiac arrest or improving other important patient outcomes. Summary These guidelines provide simplified information and empha- size the importance and fundamentals of high-quality CPR. IV-16 Circulation December 13, 2005 The following chapters provide more detail about the role of CPR, coordination of CPR with defibrillation, the role of CPR in advanced life support, and basic and advanced life support in newborns, infants and children. We hope that with more people learning high-quality CPR technique, more victims of SCA will receive good bystander CPR and thousands of lives will be saved. References 1. Zheng ZJ, Croft JB, Giles WH, Mensah GA. Sudden cardiac death in the United States, 1989 to 1998. Circulation. 2001;104:2158–2163. 2. Chugh SS, Jui J, Gunson K, Stecker EC, John BT, Thompson B, Ilias N, Vickers C, Dogra V, Daya M, Kron J, Zheng ZJ, Mensah G, McAnulty J. Current burden of sudden cardiac death: multiple source surveillance versus retrospective death certificate–based review in a large US com- munity. J Am Coll Cardiol. 2004;44:1268–1275. 3. Vaillancourt C, Stiell IG. Cardiac arrest care and emergency medical services in Canada. Can J Cardiol. 2004;20:1081–1090. 4. Rea TD, Eisenberg MS, Sinibaldi G, White RD. Incidence of EMS- treated out-of-hospital cardiac arrest in the United States. Resuscitation. 2004;63:17–24. 5. Cobb LA, Fahrenbruch CE, Olsufka M, Copass MK. Changing incidence of out-of-hospital ventricular fibrillation, 1980–2000. JAMA. 2002;288: 3008–3013. 6. Centers for Disease Control and Prevention. Web-based Injury Statistics Query and Reporting System (WISQARS) [online]. National Center for Injury Prevention and Control, Centers for Disease Control and Pre- vention (producer). Available at: http://www.cdc.gov/ncipc/wisqars. Accessed February 3, 2005. 7. Weisfeldt ML, Becker LB. Resuscitation after cardiac arrest: a 3-phase time-sensitive model. JAMA. 2002;288:3035–3038. 8. Nichol G, Stiell IG, Laupacis A, Pham B, De Maio VJ, Wells GA. A cumulative meta-analysis of the effectiveness of defibrillator-capable emergency medical services for victims of out-of-hospital cardiac arrest. Ann Emerg Med. 1999;34(pt 1):517–525. 9. Caffrey SL, Willoughby PJ, Pepe PE, Becker LB. Public use of automated external defibrillators. N Engl J Med. 2002;347:1242–1247. 10. The Public Access Defibrillation Trial Investigators. Public-access defi- brillation and survival after out-of-hospital cardiac arrest. N Engl J Med. 2004;351:637–646. 11. Page RL, Joglar JA, Kowal RC, Zagrodzky JD, Nelson LL, Ramaswamy K, Barbera SJ, Hamdan MH, McKenas DK. Use of automated external defibrillators by a US airline. N Engl J Med. 2000;343:1210–1216. 12. Valenzuela TD, Roe DJ, Nichol G, Clark LL, Spaite DW, Hardman RG. Outcomes of rapid defibrillation by security officers after cardiac arrest in casinos. N Engl J Med. 2000;343:1206–1209. 13. White RD, Bunch TJ, Hankins DG. Evolution of a community-wide early defibrillation programme experience over 13 years using police/fire per- sonnel and paramedics as responders. Resuscitation. 2005;279–283. 14. Larsen MP, Eisenberg MS, Cummins RO, Hallstrom AP. Predicting survival from out-of-hospital cardiac arrest: a graphic model. Ann Emerg Med. 1993;22:1652–1658. 15. Valenzuela TD, Roe DJ, Cretin S, Spaite DW, Larsen MP. Estimating effectiveness of cardiac arrest interventions: a logistic regression survival model. Circulation. 1997;96:3308–3313. 16. Holmberg M, Holmberg S, Herlitz J. Factors modifying the effect of bystander cardiopulmonary resuscitation on survival in out-of-hospital cardiac arrest patients in Sweden. Eur Heart J. 2001;22:511–519. 17. Holmberg M, Holmberg S, Herlitz J, Gardelov B. Survival after cardiac arrest outside hospital in Sweden. Swedish Cardiac Arrest Registry. Resuscitation. 1998;36:29–36. 18. Cobb LA, Fahrenbruch CE, Walsh TR, Copass MK, Olsufka M, Breskin M, Hallstrom AP. Influence of cardiopulmonary resuscitation prior to defibrillation in patients with out-of-hospital ventricular fibrillation. JAMA. 1999;281:1182–1188. 19. Wik L, Hansen TB, Fylling F, Steen T, Vaagenes P, Auestad BH, Steen PA. Delaying defibrillation to give basic cardiopulmonary resuscitation to patients with out-of-hospital ventricular fibrillation: a randomized trial. JAMA. 2003;289:1389–1395. 20. White RD, Russell JK. Refibrillation, resuscitation and survival in out- of-hospital sudden cardiac arrest victims treated with biphasic automated external defibrillators. Resuscitation. 2002;55:17–23. 21. Carpenter J, Rea TD, Murray JA, Kudenchuk PJ, Eisenberg MS. Defi- brillation waveform and post-shock rhythm in out-of-hospital ventricular fibrillation cardiac arrest. Resuscitation. 2003;59:189–196. 22. Berg MD, Clark LL, Valenzuela TD, Kern KB, Berg RA. Post-shock chest compression delays with automated external defibrillator use. Resu- citation. 2005;64:287–291. 23. Appleton GO, Cummins RO, Larson MP, Graves JR. CPR and the single rescuer: at what age should you “call first” rather than “call fast”? Ann Emerg Med. 1995;25:492–494. 24. Hickey RW, Cohen DM, Strausbaugh S, Dietrich AM. Pediatric patients requiring CPR in the prehospital setting. Ann Emerg Med. 1995;25:495–501. 25. Mogayzel C, Quan L, Graves JR, Tiedeman D, Fahrenbruch C, Herndon P. Out-of-hospital ventricular fibrillation in children and adolescents: causes and outcomes. Ann Emerg Med. 1995;25:484–491. 26. Berg RA, Hilwig RW, Kern KB, Babar I, Ewy GA. Simulated mouth- to-mouth ventilation and chest compressions (bystander cardiopulmonary resuscitation) improves outcome in a swine model of prehospital pediatric asphyxial cardiac arrest. Crit Care Med. 1999;27:1893–1899. 27. Berg RA, Hilwig RW, Kern KB, Ewy GA. “Bystander” chest compressions and assisted ventilation independently improve outcome from piglet asphyxial pulseless “cardiac arrest.” Circulation. 2000;101:1743–1748. 28. American Heart Association in collaboration with International Liaison Committee on Resuscitation. Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care: International Con- sensus on Science. Circulation. 2000;102(suppl):I1-I384. 29. Samson R, Berg R, Bingham R, Pediatric Advanced Life Support Task Force ILCoR. Use of automated external defibrillators for children: an update. An advisory statement from the Pediatric Advanced Life Support Task Force, International Liaison Committee on Resuscitation. Resusci- tation. 2003;57:237–243. 30. Cummins RO, Ornato JP, Thies WH, Pepe PE. Improving survival from sudden cardiac arrest: the “chain of survival” concept: a statement for health professionals from the Advanced Cardiac Life Support Subcom- mittee and the Emergency Cardiac Care Committee, American Heart Association. Circulation. 1991;83:1832–1847. 31. Herlitz J, Ekstrom L, Wennerblom B, Axelsson A, Bang A, Holmberg S. Effect of bystander initiated cardiopulmonary resuscitation on ventricular fibrillation and survival after witnessed cardiac arrest outside hospital. Br Heart J. 1994;72:408–412. 32. Stiell I, Nichol G, Wells G, De Maio V, Nesbitt L, Blackburn J, Spaite D, Group OS. Health-related quality of life is better for cardiac arrest survivors who received citizen cardiopulmonary resuscitation. Circu- lation. 2003;108:1939–1944. 33. Aufderheide TP, Sigurdsson G, Pirrallo RG, Yannopoulos D, McKnite S, von Briesen C, Sparks CW, Conrad CJ, Provo TA, Lurie KG. Hyperventilation-induced hypotension during cardiopulmonary resusci- tation. Circulation. 2004;109:1960–1965. 34. Abella BS, Alvarado JP, Myklebust H, Edelson DP, Barry A, O’Hearn N, Vanden Hoek TL, Becker LB. Quality of cardiopulmonary resuscitation during in-hospital cardiac arrest. JAMA. 2005;293:305–310. 35. Wik L, Kramer-Johansen J, Myklebust H, Sorebo H, Svensson L, Fellows B, Steen PA. Quality of cardiopulmonary resuscitation during out-of- hospital cardiac arrest. JAMA. 2005;293:299–304. 36. Assar D, Chamberlain D, Colquhoun M, Donnelly P, Handley AJ, Leaves S, Kern KB. Randomised controlled trials of staged teaching for basic life support, 1: skill acquisition at bronze stage. Resuscitation. 2000;45:7–15. 37. Heidenreich JW, Higdon TA, Kern KB, Sanders AB, Berg RA, Niebler R, Hendrickson J, Ewy GA. Single-rescuer cardiopulmonary resuscitation: ‘two quick breaths’—an oxymoron. Resuscitation. 2004;62:283–289. 38. Eftestol T, Sunde K, Steen PA. Effects of interrupting precordial com- pressions on the calculated probability of defibrillation success during out-of-hospital cardiac arrest. Circulation. 2002;105:2270–2273. 39. Yu T, Weil MH, Tang W, Sun S, Klouche K, Povoas H, Bisera J. Adverse outcomes of interrupted precordial compression during automated defi- brillation. Circulation. 2002;106:368–372. 40. Abella BS, Sandbo N, Vassilatos P, Alvarado JP, O’Hearn N, Wigder HN, Hoffman P, Tynus K, Vanden Hoek TL, Becker LB. Chest compression rates during cardiopulmonary resuscitation are suboptimal: a prospective study during in-hospital cardiac arrest. Circulation. 2005;111:428–434. 41. Chamberlain DA, Hazinski MF. Education in resuscitation: an ILCOR symposium: Utstein Abbey: Stavanger, Norway: June 22–24, 2001. Cir- culation. 2003;108:2575–2594. 42. Locke CJ, Berg RA, Sanders AB, Davis MF, Milander MM, Kern KB, Ewy GA. Bystander cardiopulmonary resuscitation: concerns about mouth-to-mouth contact. Arch Intern Med. 1995;155:938–943. Part 3: Overview of CPR IV-17 43. Ornato JP, Hallagan LF, McMahan SB, Peeples EH, Rostafinski AG. Attitudes of BCLS instructors about mouth-to-mouth resuscitation during the AIDS epidemic. Ann Emerg Med. 1990;19:151–156. 44. Brenner BE, Kauffman J. Reluctance of internists and medical nurses to perform mouth-to-mouth resuscitation. Arch Intern Med. 1993;153: 1763–1769. 45. Brenner B, Stark B, Kauffman J. The reluctance of house staff to perform mouth-to-mouth resuscitation in the inpatient setting: what are the con- siderations? Resuscitation. 1994;28:185–193. 46. Mejicano GC, Maki DG. Infections acquired during cardiopulmonary resuscitation: estimating the risk and defining strategies for prevention. Ann Intern Med. 1998;129:813–828. 47. Simmons M, Deao D, Moon L, Peters K, Cavanaugh S. Bench evaluation: three face-shield CPR barrier devices. Respir Care. 1995;40:618–623. 48. Cummins RO. The Utstein style for uniform reporting of data from out-of-hospital cardiac arrest. Ann Emerg Med. 1993;22:37–40. 49. Zaritsky A, Nadkarni V, Hazinski M, Foltin G, Quan L, Wright J, Fiser D, Zideman D, O’Malley P, Chameides L, Cummins R. Recommended guidelines for uniform reporting of pediatric advanced life support: the pediatric Utstein style. Circulation. 1995;92:2006–2020. 50. Cummins RO, Chamberlain D, Hazinski MF, Nadkarni V, Kloeck W, Kramer E, Becker L, Robertson C, Koster R, Zaritsky A, Bossaert L, Ornato JP, Callanan V, Allen M, Steen P, Connolly B, Sanders A, Idris A, Cobbe S. Recommended guidelines for reviewing, reporting, and conducting research on in-hospital resuscitation: the in-hospital ‘Utstein style.’ American Heart Association. Circulation. 1997;95:2213–2239. 51. Jacobs I, Nadkarni V, Bahr J, Berg RA, Billi JE, Bossaert L, Cassan P, Coovadia A, D’Este K, Finn J, Halperin H, Handley A, Herlitz J, Hickey R, Idris A, Kloeck W, Larkin GL, Mancini ME, Mason P, Mears G, Monsieurs K, Montgomery W, Morley P, Nichol G, Nolan J, Okada K, Perlman J, Shuster M, Steen PA, Sterz F, Tibballs J, Timerman S, Truitt T, Zideman D; International Liason Committee on Resusitation. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update and simplification of the Utstein templates for resuscitation registries. A statement for healthcare professionals from a task force of the interna- tional liaison committee on resuscitation (American Heart Association, European Resuscitation Council, Australian Resuscitation Council, New Zealand Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa). Circulation. 2004 Nov 23;110:3385–3397. 52. In-hospital resuscitation requirements reinstated for hospitals. Jt Comm Perspect. 1998;18:5. 53. Peberdy MA, Kaye W, Ornato JP, Larkin GL, Nadkarni V, Mancini ME, Berg RA, Nichol G, Lane-Trultt T. Cardiopulmonary resuscitation of adults in the hospital: a report of 14720 cardiac arrests from the National Registry of Cardiopulmonary Resuscitation. Resuscitation. 2003;58:297–308. 54. Bellomo R, Goldsmith D, Uchino S, Buckmaster J, Hart GK, Opdam H, Silvester W, Doolan L, Gutteridge G. A prospective before-and-after trial of a medical emergency team. Med J Aust. 2003;179:283–287. 55. Buist MD, Moore GE, Berenard SA, Waxman BP, Anderson JN, Nguyen TV. Effects of a medical emergency team on reduction of incidence of and mortality from unexpected cardiac arrests in hospital: preliminary study. BMJ. 2002;324:387–390. 56. Goldhill DR, Worthington L, Mulcahy A, Tarling M, Sumner A. The patient-at-risk team: identifying and managing seriously ill ward patients. Anaesthesia. 1999;54:853–860. 57. Kenwood G, Castle N, Hodgetts T, Shaikh L, Evaluation of a medical emergency team one year after implementation. Resuscitation. 2004;61: 257–263. 58. Bristow PJ, Hillman KM, Chey T, Daffurn K, Jacques TC, Normal SL, Bishop GF, Simmons EG. Rates of in-hospital arrests, deaths and intensive care admissions: the effect of a medical emergency team. Med J Aust. 2000;173:236–240. 59. MERIT trial investigators. Introduction of the medical emergency team (MET) system: a cluster-randomised controlled trial. Lancet. 2005;365: 2091–2097. IV-18 Circulation December 13, 2005