?
Ec f
?[)
?
5 10. 1 f
?[)
?¥Bá
l ??
1. )
?/
f
??
·?uW
¥Bá
l ?? b
ò S
n
(x) = , (i) x
nx?
e ∈ )1,0( (ii) x∈ ),1( +∞
ó S
n
(x) = x , x
nx?
e ∈ ),0( +∞
? S
n
(x) = sin
n
x
, (i) x∈ ),( +∞?∞ (ii) x∈ ],[ AA? ( ) 0>A
? S
n
(x) = arctan nx, (i) x∈ )1,0( (ii) x∈ ),1( +∞
? S
n
(x) =
2
2
1
n
x + , x∈ ),( +∞?∞
× S
n
(x) = nx(1 x)
n
, x∈ ]1,0[
? S
n
(x) =
n
x
ln
n
x
, (i) x∈ )1,0( (ii) x∈ ) ),1( +∞
ù S
n
(x) =
n
n
x
x
+1
, (i) x∈ )1,0( (ii) x∈ ),1( +∞
ú S
n
(x) = (sin x)
n
, x∈ ],0[ π
? S
n
(x) = (sin x)
n
1
, (i) x∈[0, ]π (ii) x∈ ],[
0>δ δπδ ?
ü S
n
(x) =
n
n
x
?
?
?
?
?
?
+1
(i) x∈ ),0( +∞ (ii) x∈ ],0( A ( ) 0>A
Y S
n
(x) =
?
?
?
?
?
?
?
?
?+ x
n
xn
1
, (i) x∈ ),0( +∞ , (ii) [ ) 0,, >+∞∈ δδx b
3
1(i) 0)( =xS
)()(sup),(
)1,0(
xSxSSSd
n
x
n
?=
∈
1= a / 1 0
∞→n
?[ { }()
n
Sx
dBá
l ? b (0,1)
(ii) 0)( =xS
)()(sup),(
),1(
xSxSSSd
n
x
n
?=
+∞∈
n
e
?
= )(0 ∞→→ n
?[ { }()
n
Sx
Bá
l ? b (1, )+∞
2 0)( =xS
)()(sup),(
),0(
xSxSSSd
n
x
n
?=
+∞∈
ne
1
= )(0 ∞→→ n
1
?[ { }()
n
Sx
Bá
l ? b (0, )+∞
3(i) 0)( =xS
)()(sup),(
),(
xSxSSSd
n
x
n
?=
+∞?∞∈
1= a / 1 0
∞→n
?[ { }()
n
Sx (,)?∞+∞
dBá
l ? b
(ii) ?0)( =xS
π
A
n
2
>
)()(sup),(
],[
xSxSSSd
n
AAx
n
?=
?∈
n
A
≤ )(0 ∞→→ n
?[ { }()
n
Sx [,]A A?
Bá
l ? b
4(i)
2
)(
π
=xS
)()(sup),(
)1,0(
xSxSSSd
n
x
n
?=
∈
2
π
= a / 1 0
∞→n
?[ { }()
n
Sx
dBá
l ? b (0,1)
(ii)
2
)(
π
=xS
)()(sup),(
),1(
xSxSSSd
n
x
n
?=
+∞∈
narctan
2
?=
π
)(0 ∞→→ n
?[ { }()
n
Sx
Bá
l ? b (1, )+∞
5 xxS =)( ??
n
x
n
xxSxS
n
11
)()(
2
2
≤?+=? ?
^
)()(sup),(
),(
xSxSSSd
n
x
n
?=
+∞?∞∈
)(0 ∞→→ n
?[ { }()
n
Sx (,)?∞+∞
Bá
l ? b
6 0)( =xS
=? )
1
()
1
(
n
S
n
S
n
n
n
)
1
1( ? a / 1 0
∞→n
?[ { }()
n
Sx [0
dBá
l ? b ,1]
7(i) ??0)( =xS 0)0()0( =+?+ SS
n
O
2
[]=? )()( xSxS
dx
d
n
0)ln1(
1
<+
n
x
n
)2( ≥n
?
^
n
n
xSxSSSd
n
x
n
ln
)()(sup),(
)1,0(
=?=
∈
)(0 ∞→→ n
?[ { }()
n
Sx
Bá
l ? b (0,1)
(ii) 0)( =xS
=? )2()2( nSnS
n
2ln2 a / 1 0
∞→n
?[ { }()
n
Sx
dBá
l ? b (1, )+∞
8(i) 0)( =xS
=??? )
1
1()
1
1(
n
S
n
S
n
n
n
n
n
)
1
1(1
)
1
1(
?+
?
a / 1 0
∞→n
?[ { }()
n
Sx
dBá
l ? b (0,1)
(ii) 1)( =xS
=+?+ )
1
1()
1
1(
n
S
n
S
n
1
)
1
1(1
)
1
1(
?
++
+
n
n
n
n
a / 1 0
∞→n
?[ { }()
n
Sx
dBá
l ? b (1, )+∞
9
?
?
?
?
?
?
?
≠∈
=
=
2
],,0[0
2
1
)(
π
π
π
xx
x
xS | ],0[ π∈
n
x
P¤
n
x
n
1
1sin ?= 5
2
π
≠
n
x
=? )()(
nnn
xSxS
n
n
)
1
1( ? a / 1 0
∞→n
?[ { }()
n
Sx [0, ]π
dBá
l ? b
10(i) |
?
?
?
<<
=
=
π
π
x
x
xS
01
,00
)( ),0( π∈
n
x
P¤
n
n
x
2
1
sin = 5
3
=? )()(
nnn
xSxS 1
2
1
? a / 1 0
∞→n
?[ { }()
n
Sx (0, )π
dBá
l ? b
(ii) 1)( =xS
)()(sup),( xSxSSSd
nn
?=
],[x ?∈ δπδ
δ
n
1
sin1?= )(0 ∞→→ n
?[ { }()
n
Sx [, ]δ πδ?
Bá
l ? b
11(i)
x
exS =)(
=? )()( nSnS
n
nn
e?2 a / 1 0
∞→n
?[ { }()
n
Sx
dBá
l ? b (0, )+∞
(ii) ??
x
exS =)( 0)0()0( =+?+ SS
n
O? sv
H n
[]=? )()( xSxS
dx
d
n
01
1
<?
?
?
?
?
?
?
+
?
x
n
e
n
x
?
^
)()(sup),(
],0(
xSxSSSd
n
Ax
n
?=
∈
n
A
n
A
e
?
?
?
?
?
?
+?= 1 )(0 ∞→→ n
?[ { }()
n
Sx (0, ]A
Bá
l ? b
12(i)
x
xS
2
1
)( =
=? )
1
()
1
(
n
S
n
S
n
n
?
?
?
?
?
?
?
2
3
2 a / 1 0
∞→n
?[ { }()
n
Sx
dBá
l ? b (0, )+∞
(ii)
x
xS
2
1
)( =
S
n
(x) =
?
?
?
?
?
?
?
?
?+ x
n
xn
1
)(
2
1
1
1
xS
x
x
n
x
=<
++
=
4
??
[] 0
4
1
)
1
()
1
(2
1
)()(
2
3
>+
+++
?
=?
x
n
xx
n
xx
xSxS
dx
d
n
V?
)()(sup),(
),[
xSxSSSd
n
x
n
?=
+∞∈δ
)()( δδ SS
n
?=
δ
δδ
2
11
+
?
?
?
?
?
?
?
?
?+?=
n
n )(0 ∞→→ n
?[ { }()
n
Sx [, )δ +∞
Bá
l ? b
2.
! S
n
(x) = n(
n
x
n
x
2
)5f
??
{S (x)}
l ???Bá
l ?OK
?Ds
????D'
n
]1,0[
∞→n
lim
∫
1
0
)(xS
n
dx ≠
∫
∞→
1
0
lim
n
S
n
(x) dx b
£ f
??
{S
n
(x)}
l ??]1,0[ 0)( =xS b|
n
x
n
1
1?= 5
=? )()(
nnn
xSxS +∞→
?
?
?
?
?
?
???
nn
nn
n
2
)
1
1()
1
1(
?[ {S
n
(x)}
dBá
l ? b ]1,0[
??
∞→n
lim
∫
1
0
)(xS
n
dx
∞→
=
n
lim xxxn
nn
d)(
1
0
2
∫
?
2
1
= S
∫
∞→
1
0
lim
n
n
(x) dx 0=
?[
dx
∞→n
lim
∫
1
0
)(xS
n
≠
∫
∞→
1
0
lim
n
S
n
(x) dx b
3.
! S
n
(x) =
22
1 xn
x
+
5
ò f
??
{S
n
(x)} ),( +∞?∞
Bá
l ?
ó
?
?
?
?
?
?
)(
d
d
xS
x
n
?Bá
l ? ),( +∞?∞
? K
?Dp?
????D'
∞→n
lim
xd
d
S
n
(x) =
xd
d
∞→n
lim S
n
(x)
i?BM x∈ ? ? b ),( +∞?∞
3
1S
n
(x)=
22
1 xn
x
+
0)( =xS 5
n
xn
x
xSxS
n
2
1
1
)()(
22
≤
+
=? )(0 ∞→→ n
5
?[ {S
n
(x)} ),( +∞?∞
Bá
l ? b
2 )(xS
dx
d
n
222
22
)1(
1
xn
xn
+
?
= )(lim)( xS
dx
d
x
n
n ∞→
=σ
?
?
?
≠
=
=
00
01
x
x
|
n
x
n
2
1
= 5
)(
nn
xS
dx
d
25
12
)( =?
n
xσ a / 1 0
∞→n
?[
?
?
?
?
?
?
)(
d
d
xS
x
n
?Bá
l ? b ),( +∞?∞
3?? 0=x )
xd
d
∞→n
lim S
n
(x) 0= )(lim)( xS
dx
d
x
n
n ∞→
=σ 1=
?[ ) 0=x
∞→n
lim
xd
d
S
n
(x) =
xd
d
∞→n
lim S
n
(x)
?? ? b
4.
! S
n
(x) =
n
1
arctan x
n
5f
??
{S
n
(x)} ),0( +∞
Bá
l ?
k
ùK
?Dp?
????D'
∞→n
lim
xd
d
S
n
(x) =
xd
d
∞→n
lim S
n
(x)
^?? ? ?
3 S
n
(x)=
n
1
arctan
n
x
n
n
n
x
x
xS
2
1
'
1
)(
+
=
?
=)(xS
∞→n
lim S
n
(x) 0= 0)(' =xS
?[ )1('
2
1
)1(lim
'
SS
n
n
≠=
∞→
'
∞→n
lim
xd
d
S
n
(x) =
xd
d
∞→n
lim S
n
(x)
?? ? b 1=x
5.
! S
n
(x) = ? a
^?
? bp a¥|′S?
P¤f
??
{S
nx
xen
?α
n
(x)}
]1,0[
ò Bá
l ?
ó s
?DK
? V[?D'
∞→n
lim
∫
1
0
)(xS
n
dx = S
∫
∞→
1
0
lim
n
n
(x) dx
? p?
?DK
? V[?D'BM x∈[0,1]? ?
∞→n
lim
xd
d
S
n
(x) =
xd
d
∞→n
lim S
n
(x) b
6
3 (1) S=)(xS
∞→n
lim
n
(x)
7 ¤?0= =)(
'
xS
n
0)1( =?
?
nxen
nxα
n
x
1
= '
=?=
∈
)()(sup),(
]1,0[
xSxSSSd
n
x
n
11
)
1
(
??
= en
n
S
n
α
?[ 0),(lim =
∞→
SSd
n
n
?O?? 1<α
H? ?
?[? 1<α
H {S
n
(x)} ]1,0[
Bá
l ? b
(2) S
∫
∞→
1
0
lim
n
n
(x)dx
∫
==
1
0
0)( dxxS
∫
=
1
0
)( dxxS
n
n
e
n
nn
???
+? )
1
1(
12 αα
?[?O?? 2<α
H? ? .
∞→n
lim
∫
1
0
)(xS
n
dx = S
∫
∞→
1
0
lim
n
n
(x) dx b
(3)
xd
d
∞→n
lim S
n
(x)
xd
d
= 0)( =xS
xd
d
S
n
(x) )1( nxen
nx
?=
?α
??
)1(lim nxe
nx
n
?
?
∞→
?
?
?
=
∈
=
01
]1,0(0
x
x
?[?O?? 0<α
H
∞→n
lim
xd
d
S
n
(x)=
xd
d
∞→n
lim S
n
(x)
BM x∈[0,1]? ? b
6.
! S '(x)uW
?? ),( ba
S
n
(x) =
?
?
?
?
?
?
?
?
?
?
?
?
?
+ )(
1
xS
n
xSn
£
ü {S
n
(x)}
=>Bá
l ?? S '(x) b ),( ba
3 A? S
∞→n
lim
n
(x)
?[o?£
ü )(' xS= 0>?η , { })(xS
n
[]ηη ?+ ba ,
Bá
l ?? b )(' xS
| ηα <<0 , 5 )(' xS [ ]αα ?+ ba ,
Bá ?? , '
0,0 >?>? δε , ∈? ",' xx [ ]αα ?+ ba , , o1 δ<? "' xx , ü? ?
ε<? )"(')'(' xSxS b
|
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
=
αηδ
1
,
1
maxN , 5? ONn > ∈x [ ]ηη ?+ ba ,
Hμ
∈+
n
x
1
[ ]αα ?+ ba , ,
7
?
^
=? )(')( xSxS
n
εξ <? )(')(' xSS
?[ {S
n
(x)}
=>Bá
l ?? S '(x) b ),( ba
7.
!
??
7 )(
0
xS ],0[ a
S
n
(x) = d t n = b
∫
?
x
n
tS
0
1
)( ",2,1
£
ü {S
n
(x)}
Bá
l ?? 0 b ],0[ a
£
! MxS ≤)(
0
, 5
MxdttSxS
x
≤=
∫
0
01
)()(
∫∫
≤=
xx
MtdtdttSxS
00
12
)()(
!2
2
x
M=
"
∫∫
=
?
≤=
?
?
x
nn
x
nn
n
x
Mdt
n
t
MdttSxS
0
1
0
1
!)!1(
)()(
"
??
!! n
a
M
n
x
M
nn
≤ 0)
!
(lim =
∞→
n
a
M
n
n
?[ {S
n
(x)}
Bá
l ?? 0 b ],0[ a
8.
! S(x)
??O S(1) = 0 b£
ü {x]1,0[
n
S(x)} [0,1]
Bá
l
? b
£ S(x)
??
?[μ?
!]1,0[ MxS ≤)( b ? , V? 0)1( =S
0,0 >?>? δε , [ ]1,1 δ?∈?x ? ? ε<)(xSx
n
b
?? { }
n
x []δ?1,0
Bá
l ??
, V?
,N? , Nn >? [ ]δ?∈? 1,0x ? ?
M
x
n
ε
<
?
^
ε<)(xSx
n
8
BM ? ?yN {x]1,0[∈x
n
S(x)} [0,1]
Bá
l ? b
9