5 í ??f
?
??/
f
?¥1??l×
22
1
)ln(
yx
x
xyu
??
+?=
zyx
u
111
++=
)(
22222222
rRrzyxzyxRu >?+++???=
22
arcsin
yx
z
u
+
= b
3 (1) { }xyyxyxD ><+= ,1),(
22
b
(2) {}0,0,0),,( >>>= zyxzyxD b
(3) { }
22222
),,( RzyxrzyxD ≤++≤= b
(4) { }0,),,(
2222
≠++≤= yxyxzzyxD b
!
2/322
3
)( yx
x
x
y
f
+
=
?
?
?
?
?
?
p b)0( >x )(xf
3 y1
3
3223/2
2
2
1
()
1
yx
f
xxy
y
x
??
==
??
+
??
? ?
??
+
? ?
??
??
? ?
? ?
?[
2
3
2
)1(
1
)(
x
xf
+
= b
?f
?
)1(),( ?+= xfyyxz
O?
H p ? b4=y 1+= xz )(xf ),( yxz
3 ? (,4) 4 ( 1) 1z xfx=+ ?=+x V¤
2
(1) 1(11)fx x x?=?= ?+ ?1
?[
22
() ( 1) 1 2f xx x=+?=+x,
1),( ?+= yxyxz b
)
?/
f
?? t?
H¥K
^?i),( yx )0,0(
1
yx
yx
yxf
+
?
=),(
22
),(
yx
xy
yxf
+
=
?
?
? <<
=
;0
,0,1
),(
2
??
xy
yxf
84
33
),(
yx
yx
yxf
+
= b
3
1? ?
1
(, )
1
x kx k
fxkx
x kx k
??
==
++
G ?? L
? [ ? t?
Hf
?K?ib
),( yx )0,0(
2
2
22
(, )
() 1
kx k
fxkx
2
x kx k
==
++
G ?? L
?[? t?
Hf
?
K?ib
),( yx )0,0(
3??
2
(, ) 1
2
x
fx =
?[? wL),( yx
2
2
x
y = t?
Hf
?
K1 7? x àt?
Hf
?K1
?[? t
?
Hf
?K?ib
)0,0(
),( yx )0,0( ),( yx
)0,0(
4 ?¨ü (′??
T
=
+
3
84
yx
3
88
844
4
1
3
2
1
2
1
yx
yxx
≥
++
V¤
133 3
33
3
848
3
||4||4
|(,)| | |
33
||
xy xy
f xy xy
xy
xy
=≤ =
+
0,(( , ) (0,0))xy→→
?[? t?
Hf
?KiO1 b ),( yx )0,0(
íf
?£
üK·B? ?μ?? ???? ?
C/?b
£
L
! f (x)=A
f (x)=#5
0
lim
xx→
0
lim
xx→
0ε? >
101
: |() |fAε? <x 0, (0 | | )δ δ?>? <? <xxx
202
: |() |fBε? <x b 0, (0 | | )δ δ?>? <? <xxx
|
{ }
12
min , 0δδδ=>?
0
0| |δ<? <xx ? ?
| ||() ||() |2AB f A f B ε? ≤?+?<xx
?? ε1?i?
?
?[ A=B'K·Bb
2L
! f (x)=A
5?
0
lim
xx→
1ε =
2
0
0, (0 | | ) :δ δ?>? <? <xxx |() |1fA? <x
'
|()|| |1fA< +x b
?[ f (x) x ?¥???
5×μ?b
0
(3)
! f (x)=A> g (x)=B5?
0
lim
xx→
0
lim
xx→
0
2
AB
ε
?
= >
101
: |() |fAε? <x 0, (0 | | )δ δ?>? <? <xxx
'
()
2
A B
fAε
+
>?=x b
?
202
: |() |gBε? <x 0, (0 | | )δ δ?>? <? <xxx
'
()
2
A B
gBε
+
<+=x
|
{ }
12
min , 0δδδ=>?
0
0| |δ<? <xx ? ? ???
() ()
2
AB
gf
+
<<x x b
(4)L?i 0ρ >
P?
0
0| |ρ<? <xx
H? ?
() () ()gfh≤≤xxx
O g (x) = h (x)=Ab
0
lim
xx→
0
lim
xx→
0ε?>, ? h (x)=A
0
lim
xx→
101
: |() |hAε? <x 0, (0 | | )δ δ?>? <? <xxx
?[
()hAε<+x b
?? g (x) =A
0
lim
xx→
202
: |() |gAε? <x 0, (0 | | )δ δ?>? <? <xxx
?[
()gAε>?x b
|
{ }
12
min , , 0δρδ=>?
0
0| |δ< ?<xx ? ?
() () ()Ag fhAε ε?< ≤ ≤ <+xxx
' f (x)=Ab
0
lim
xx→
íf
?£
üK¥
15
?E5L
!? x t? x
Hf
? f (x)? g (x)¥Ki5
0
f (x)g (x)) = f (x) g (x)
0
lim
xx→
0
lim
xx→
0
lim
xx→
3
(f (x) ·g (x)) = f (x)· g (x)
0
lim
xx→
0
lim
xx→
0
lim
xx→
(f (x)g (x)) = f (x) g (x)
g (x) ? 0b
0
lim
xx→
0
lim
xx→
0
lim
xx→
0
lim
xx→
£ L
! f (x)=A g (x)=Bb5?i
0
lim
xx→
0
lim
xx→
0ε >
101
: |() |fAε? <x 0, (0 | | )δ δ?>? <? <xxx
202
: |() |gBε? <x 0, (0 | | )δ δ?>? <? <xxx
|
{ }
12
min , 0δδδ=>?
0
0| |δ<? <xx ? ?
|(() ()) ( )|| () | | () |2fg ABfAgBε±?±≤?+?<xx x x
?[
1? ?b
?? g (x) x μK
?[ g (x) x
0
?μ?'i?
? X
?
0
'0δ > ?x
0
(0 | | ') :δ<? <xx |()|gX<x b|
{ }
12
min ', , 0δδδ= > ?
0
0| |δ<? <xx ? ?
| ()() || ()() ()| | () |fg ABfg Ag Ag AB?≤ ? + ?xx xx x x
(||)X A ε<+
?[
2? ?b
?? B?0 0
2
B
εε
??
?<<
??
??
"0δ? >
0
(0 | | ")δ? <? <xxx
||
|()|| |
2
B
gBε>?≥x b
|
{ }
12
min ", , 0δδδ=>?
0
0| |δ< ?<xx ? ?
() (() ) (() )
() ()
f ABf AAg B
gB Bg
?? ?
?≤
xxx
2
2(||||)
||
AB
B
ε
+
<
?[
3? ?b
p/
òK
22
)1,0(),(
1
lim
yx
xy
yx
+
?
→
22
22
)0,0(),(
1
lim
yx
yx
yx
+
++
→
xy
xy
yx
11
lim
)0,0(),(
?+
→
11
lim
22
22
)0,0(),(
?++
+
→
yx
yx
yx
22
2
)0,0(),(
)ln(
lim
2
yx
ex
y
yx
+
+
→
22
33
)0,0(),(
)sin(
lim
yx
yx
yx
+
+
→
2222
22
)0,0(),(
)(
)cos(1
lim
yxyx
yx
yx
+
+?
→
b
)(22
)(lim
yx
y
x
eyx
+?
+∞→
+∞→
+
3
1
(,) (0,1)
22 22
(,) (0,1)
(,) (0,1)
lim (1 )
1
lim 1
lim ( )
xy
xy
xy
xy
xy
xy xy
→
→
→
?
?
==
++
b
4
2
22 22
(,) (0,0) (,) (0,0)
lim ( ) 0, lim (1 ) 1
xy xy
xy xy
→→
+ =+=
?[
22
22
)0,0(),(
1
lim
yx
yx
yx
+
++
→
∞+ b
3
(,)(0,0) (,)(0,0)
11 1
lim lim
11
xy xy
xy
xy
xy
→→
+?
=
+ +
2
1
b
4
22
22
22(,)(0,0) (,)(0,0)
lim lim ( 1 1) 2
11
xy xy
xy
xy
xy
→→
+
=+++
++?
=
2
b
5
22
222
ln( ) ln(1 1) ( ) ( )
yy
x exexyoyxyox+=++?=++ =+++y
?[
2
2
22
(,) (0,0)
ln( )
lim
y
xy
xe
xy
→
+
=
+
1b
6
33 33 22 22
|sin( )| | | | || | 2| || |x yxyxyxyxy xyxy+≤+=++?≤++
?[
22
33
)0,0(),(
)sin(
lim
yx
yx
yx
+
+
→
b 0
7y1
()
22 222
1
1cos()()(,)(0,
2
xy xy xy?+ + →~ )
222
2222
1
()
1
2
()||
xy
x yxy xy
+
≥
+
(,) (0,0)
1
lim
xy
xy
→
=+∞
?[
22
2222
(,) (0,0)
1cos( )
lim
()
xy
xy
xyxy
→
?+
=
+
222
2222
(,) (0,0)
1
()
2
lim
()
xy
xy
x yxy
→
+
=
+
∞+ b
8
22() 2 2
lim ( ) lim ( ) lim ( ) 0
xy x y y x
xxx
yy
xye xee yee
?+ ? ? ? ?
→+∞ →+∞ →+∞
→+∞ →+∞ →+∞
????+= +
????
=b
)
?/
f
?e?¥=×K?=QK
5
222
22
)(
),(
yxyx
yx
yxf
?+
=
22
2222
)1()1(
),(
yx
yyxx
yxf
+
+?+
=
x
y
y
xyxf
1
sin
1
sin),( += b
3 (1) ??
2
42
4224
00
(1 ) 1
lim ( , ) lim
(1 ) 1
xx
yxkx
xkx
fxy
2
x kx k x k
→→
=+
+
==
+ ++
?[=×K?ib
?
2
0
0
lim ( , ) 0, 0
x
fxy y
y
→
== ≠ V?
00
lim lim ( , ) 0
yx
fxy
→→
= b] ? V?
b
?[=QKiO??? b
00
lim lim ( , ) 0
xy
fxy
→→
=
2??
2 2 22 22 2
22
00
(1 ) (1 ) 1
lim ( , ) lim
(1 ) 1
xx
ykx
2
x xkx kx k
fxy
x kk
→→
=
+? + ?
==
+ +
?[=×K?ib?
2
00 0
lim lim ( , ) lim(1 ) 1
yx y
fxy y
→→ →
=? + =?
b
2
00 0
limlim ( , ) lim(1 ) 1
xy x
fxy x
→→ →
=+=
?[=QK?i??M?b
3?? |
?[(,)|||||fxy x y≤+
0
0
lim ( , ) 0
x
y
fxy
→
→
= b
??
0
1
lim sin ( 0)
x
yy
x
→
≠ ?
0
1
lim sin ( 0)
y
xx
y
→
≠ ??i
?[
?=Q
K??ib
£f
?
6
?
?
?
?
?
?
?
?
?
<<>?
≤<>
?
?
?
?
?
?
?
=
??
O
O
,0
,20),2(
1
,
2
1
0,
2
12
),(
222
2
222
2
xyxxyx
x
xyxxxy
x
yxf
e?? ??7
?? ??b
£
! 0x >
2
(, )fxx =
22
2
21
1
2
xx
x
??
? =
??
??
?[?? (, )x y t
?e?
Hf
? ¥K1 7??
2
(0yxx=>)
(, )fxy (, )x y àt?e?
Hf
?
¥K1
?[f
? e?? ??b
x
(, )fxy (, )fxy
?f
?
??¥ ???o1 I
nf
?/
?wL(, )fxy
22 2
(0x >
1
,,2
2
yxyxyx=== )
¥f ?
y1"?
?wL?e ?¥u×
f
?A? ?? b
! b
0
0x >
2
00 0 0
1
(, )(, )
2
x yxx= ???
00 00
2
2
00
2
(,) ( , ) (,) ( , )
/2
1
2( )
2
lim ( , ) lim 0 ( , )
xy x y xy x y
yx
yx
f xy f x y
x
→→
>
?
===
00
2
(,) ( , )
/2
lim ( , ) 0
xy x y
yx
fxy
→
≤
=
00
(, )f xy=
?[f
? (, )fxy
00
(, )xy=
2
00
1
(, )
2
x x ??b] ? V?f
? (, )fxy
00
(, )xy=
2
00
(,2)x x 9 ??b
00
(, )xy=
2
00
(, )x x ???
00 00
22
222
00
22
(,)(,) (,)(,)
0
2
22
lim ( , ) lim 1
xy xy xy xy
xyx
xxxy
fxy
xx
→→
>>
??
===
00
(, )f xy=
00 00
22
222
00
22
(,)(,) (,)(,)
0
/2
11
2( ) 2( )
lim ( , ) lim 1
xy x y xy x y
xyx
yx x x
fxy
xx
→→
<≤
??
===
00
(, )f xy=
?[f
? (, )fxy
00
(, )xy=
2
00
(, )x x 9 ??b
8
?
?f
? "
e?? ??
??? ??b(, )fxy
)
? f
?
?
?
?
?
?
=+
≠+
+
=
0,0
,0,
),(
22
22
22
2
yx
yx
yx
yx
yxf
¥ ??S?b
7
3 A?f
? u×(, )fxy
{ }
22
(, ) 0xy x y+ ≠
??
?[o1 I
nf
? e?¥ ???b?(, )fxy
22
1
||||(
2
2
)x yxxy≤+¤?
2
22
1
||
2
xy
x
xy
≤
+
?[
(,) (0,0)
lim ( , )
xy
f xy
→
=
2
22
(,) (0,0)
lim 0
xy
xy
xy
→
=
+
'f
?e?9 ??byNf
? ü
?
?? ??b(, )fxy
! uW
μ ???
?)(tf ),( ba ),(),( baba ×=D b?l
¥
f
?
D
?
?
?
?
?
=′
≠
?
?
=
.),(
,,
)()(
),(
yxxf
yx
yx
yfxf
yxF
£
ü??? ? ?),( bac∈
)(),(lim
),(),(
cfyxF
ccyx
′=
→
b
£ ?5
! ?¨ Lagrange?′? ? () () '()( )fx fy f x yξ? =?? ξo
? ? -Wb
?[ x y
(,) (,) (,) (,)
lim ( , ) lim '( ) ( )
xy cc xy cc
xy
Fxy f f cξ
→→
≠
′= =
(,) (,)
lim ( , ) lim '( ) ( )
xy cc x c
xy
Fxy f x f c
→→
=
′= =
8?
?
T V¤
)(),(lim
),(),(
cfyxF
ccyx
′=
→
b
!=íf
? 7"),( yxf
2
RD ? =?M
^ ??¥?M
x
y
?@ LipschitzHq
|),(),(| yxfyxf ′′?′ ? |'| yyL ′′?
? D∈′′′ ),(),,( yxyx L1è
?
Yè?1 Lipschitz è
? b£
ü
= ??b),( yxf D
£ L
! ??f
??M
^ ??
00
(, )xy∈D x 0ε?>
0
0, (| | )xx xδ δ?>? ? < ? ?
000
(, ) ( , )f xy f x y? ε< b
8
?
00
(, ) ( , ) min(, )xy x y δ ε?<
H
≤? ),(),(
00
yxfyxf +? ),(),(
0
yxfyxf
00
(, ) ( , )
0
f xy f x y?
0
Ly y≤?+
00
(, ) ( , )
0
f xy f x y?
Lε ε≤+
?[ ),( yxf
00
(, )x y = ??£8b
13£
ü? f? g
^ D
¥ ???
5?
f + gDf
?
! f , g# D
?
^ ??¥b
£ L
! D? f? g
^ ??
0
x ∈ 0ε? >
0
0, (| | )δ δ?>? ? <xx x ? ?
0
|() ()|ε? <fx fx
1
0, (| | )
01
δ δ?>? ? <xx x ? ?
0
|() ( )|ε? <gx gx
?
^
00
|() ()(() ()|+ ?+fx gx fx gx
00
| ( ) ( )| | ( ) ( )|≤? +?f x f x g x g x 2ε≤
?[?
f + g ??b?
0
x
00
|(),() (),()<>?<fx gx fx gx |>
0
|
00
|() (),() (),()()=< ? >+< ? >fx fx gx fx gx gx
0
|()| | ( )|ε ε≤+gx f x
?? g ??
? [ g¥
??s
? ?? V7? ?μ? ?
^ g9
?μ?b?
T! f , g# ??£8b
0
x
£
ü ˉ??
¥ ???? ?
? ? b
£ L
! g D
?? f ?
?? i O
000
,()D∈ =∈xugx?b? f
??
0
u
0
0, 0, (| | )ε ηη? >?>? ? <uu u ? ?
9
0
|() ()|ε? <fu fu b
?
? 0η > ? g ???
0
x
0
0, (| | )δ δ? >? ? <xx x ? ?
0
|() ( )|η? <gx gx b
?
^?
0
||δ?<xx
H
00
| ( ) ( )| | ( ) ( )| ε?=?nullnullf gx f gx fu fu <
?[ˉ?f
? nullf g ??b
0
x
10