5 íHq′ 1 ) ?/ f ?¥′  1  61222),( 2244 +??+= yxyxyxf  2  2244 2),( yxyxyxyxf ???+=  3  222 ),,( zyxzyxf ?+=  4  ))((),( 42 xyxyyxf ??=  5 y b x a xyyxf 33 ),( ++=  ?è ?  0,0 >> ba  6 zy z x y xzyxf 2 ),,( +++=  b 0,, >zyx 3 (1) 5 p?b? 3 3 440 824 x y fxx fy y ? =?= ? ? =?= ? ? 0  3¤ 0, 1; 0, 3xy=± =± 'f ?μ 9??b? 2 4(3 1) xx fx= ?  0 xy f =  2 24( 1) yy fy= ?  V? 22 96(3 1)( 1)Hxy=??b ?¨? ? 12.6.2b ? )0,0( )3,1(  )3,1( ?  )3,1(?  )3,1( ?? ? @  ? [ ^′? 7 ??? ^′?b ? 0H > xx f ¥?| V?f ? ? |v′  )0,0( 6 )3,1(  )3,1( ?  )3,1(?  )3,1( ?? 1 ? |l′ b 13? ? '5 V P¨ ¥ZE¤? 22 2 2 ( , ) ( 1) 2( 3) 13fxy x y=?+ ?? ?N^? )3,1(  )3,1( ?  )3,1(?  )3,1( ?? 1?1f ?¥Kl′? Kl′1 f ? í K v ′  ?1f ?¥v′? v′1 b 13? )0,0( 6  25 p?b? 145 3 3 422 422 x y fxxy fyxy ? =??= ? ? =??= ? ? 0 0   TMh V3¤  '?1  0, 1xy==± )0,0( )1,1( )1,1( ?? ??b  ?   2 12 2 xx fx=? 2 xy f =? 2 12 2 yy fy= ?  V? 22 4(6 1)(6 1) 4Hx y=???b ?¨? ? 12.6.2b ? )1,1( )1,1( ?? ?@  ? [ ^′?  ? 0H > xx f ¥?| V?f ? )1,1( )1,1( ?? ? |l′ b 2?  ?μ  O)0,0( 0H = (0,0) 0f = b??  22 (,) 2 ( 2)fxx x x=? 4 (, ) 2f xx x?=  V?f ? ??íM| ?[ ? ^′?b )0,0( )0,0(  35 p?b? 20 20 20 x y z fx fy fz ? = = ? = = ? ? =?= ?  3¤ ^·B¥?b?(0,0,0) (0,0,0) 0f =  2 (, ,0) 2 f xy x y=+ 2 (0,0, )f z=?z 0 )  V?f ? ??íM|' ( ? ^′? ?[f ?í′?b (0,0,0) 0,0,0) ? ?=Q[ T   ? ¥ Hesse ? H ^è ?  ?á ìμ ?/2 ? ()f x n ∈Rx ! 1 ¥?5? V? 0 x ()f x 00 ()()()( T ff H?=? ?x x xx xx  a 1Kl′¥ sA1Hq ^ H1??? ? 0 ()f x  b 1Kv′¥ sA1Hq ^ H1?μ? ? 0 ()f x  c ? ^′¥ sA1Hq ^ H1?? ?b 0 ()f x '5??f ? ¥ Hesse ?1?? ? ?[ ? ^ ¥′?b (, ,)fxyz (0,0,0) (, ,)fxyz 146  45 p?b? 42 24 2(3 2 ) 0 20 x y fxxyxy fyxx ? =?? ? ? =??= ? ? =  3¤ ;0xy== 1, 1x y=±=; 1 , 8 2 xy=± = 3 '?1   )0,0( (1,1) (1,1)? ) 8 3 , 2 2 ( ? ) 8 3 , 2 2 (? ??b? 42 30 12 2 xx fxyxy= ?? 3 24 xy f xx=? ?   V? 2 yy f = 42 2(30 12 2 )Hxyxy 32 (2 4 )=??x x?+ b ?¨? ? 12.6.2b? ) 8 3 , 2 2 (  ) 8 3 , 2 2 (? ?@  ?[ ^′? ? 0H > xx f ¥?| V?f ? ) 8 3 , 2 2 (  ) 8 3 , 2 2 (? |l′ 1 64 ? b   ?  ?[  (1(1,1) (1,1)? 0H < (1,1) ,1)? ? ^′?b  ?)0,0( 0H =  O (0,0) 0f = b? ? 35 (, ) (1 ) 2 f xx x x=? ? ^?f ?  ??íM| ?[ ? ^′?b )0,0( )0,0(  55 p?b? 3 2 3 2 0 0 x y a fy x b fx y ? = ?= ? ? ? ? = ?= ? ?  3¤ 22 , ab ba ?? ? ?? ? ^·B¥?b? 3 3 2 xx a f x =  1 xy f =  3 3 2 yy b f y =  V? 33 33 4 1 ab H xy = ? b ?¨? ? 12.6.2b??? 22 , ab ba ?? ?? ?? μ ? 0H > xx f ¥?| 147 V?f ? ),( 22 a b b a ? |l′ 3 b ab  65 p?b? 2 2 2 10 1 0 12 0 x y z y f x z f xy f yz ? =? = ? ? ? =? = ? ? ? =? = ? ?  3¤·B¥? 113 424 2,2,2 ?? ? ?? ? b??f ? 113 424 2,2,2 ? ? ?? ? ? ?¥ Hesse ? 31 42 11 1 24 1 1 4 220 22 2 022 ? ? ? ? ? ?? ? ?? ? ?? ? ?? ? ^??¥ ?[f ? )2,2,2( 4 3 2 1 4 1 |l′ 1 4 42? b 2 ! £ üf ? ¥Kl′1 0b xzxyzyxzyxf 2223),,( 222 +?++= f £ 5 p?b? 2220 620 42 0 x y z fxyz fyx fzx ? =?+= ? =?= ? ? =+= ?  3¤·B? ??f ? ( ?¥ Hesse ? ^ ??¥ ?[f ? ? |l′ (0,0,0) 0,0,0) 222 260 204 ? ?? ?? ? ?? (0,0,0) (0,0,0) 0f = b ? '5 V P¨ ¥ZE¤? 22 11 (, ,) ( 2) ( 2) 22 2 1 f xyz x y x z y=?+++ ?N V?f ? ? |Kl′(0,0,0) (0,0,0) 0f = b 3. £ üf ? μí k?v′? ?íl′ ?b yy yxyxf ecos)e1(),( ?+= £ ? (, ) (1 e)sin 0 (, ) ecos (1 )e 0 y x yy y fxy x fxy x y ? =? + = ? ? = ?+ = ? ?  148 3¤ xkπ= , cos 1ykπ=? ?[?1 (,cos 1)kkπ π ?  0, 1, 2,k = ±±null b ? (1 ) cos y xx fex=? + sin y xy f ex=?  ecos (2 )e yy yy f xy=?+ V? ? (,cos 1)kkπ π ? ) cos (1 ) yy Hkeπ=+e ?[? k 1  ? H 0H < (,cos 1)kkπ π ? ? ^′? ? k 1 } ? H ?0H > 0 xx f <  V? (,cos 1kk)π π ? ^v′?b ?[f ?μí k ?v′??íl′?b 4 pf ? )sin(sinsin),( yxyxyxf +?+= > u× }2,0,0|),{( π≤+≥≥= yxyxyxD ¥Kv′DKl′b 3 ? cos cos( ) 0 cos cos( ) 0 x y fxxy fyxy =?+=? ? ? =?+= ? ?  ¤? cos cos cos( )x yx==+yb { }(, )|0 , 2xy xy x y π=<<+<D null  I n ¤? 2x yxyπ== ??' 22 , 33 π π ? ? ?? ? ? ^f ? u× =?·B¥?b? ? u×H?  '? 0x= 0y =  2xy π+ = H μ 7  u× =?·B¥?  |′1 (, ) 0fxy= 22 33 (,) 33 2 f ππ 0= > ? > u×  ?? f ?¥?é V?f ?¥Kv′1 2 33 max =f Kl′1 b 0 min =f 5 ¨8"¥°L]1,0[ bax+=ξ ?}9 wL ? ? P ? ü Zμ¥s 2 xy = ∫ ?= 1 0 2 )(),( dxybaJ ξ 1lil/¥KDí ?b 3 1 22 0 (,) ( )Jab x ax b dx=?? ∫ 22 11 (2) 523 a ababb= ?+ ? + + ^ ¥=Q[ T ?¥ Hesse ?,ab 2 1 3 12 ?? ? ? ?? ?? ? ? ^??¥ ?[μK l ′ n? 15 3¥? b? ? p? ,ab 149 21 0 32 2 20 3 a b Jab Jab ? = ?+= ? ? ? ? = +?= ? ?  ¤? 1 1, 6 ab==?' 1 1, 6 ? ? ? ?? ? ? ^·B¥? ?[A? ^Kl′?by NKD°L1 6 1 ?= xξ b 6??1 R¥?  p =¤ ???¥ ?Kv?b 3 !? =¤ ???¥òH ?¥???1 123 ,,α αα5 ???¥ ? 1 22 123 12 1 [sin sin sin ] [sin sin sin( )] RR S 2 α αα αααα=++=+?+ ?? 4 5? 12 2 3 3 π α αα= == H ?Kv? H? =¤ ???1? ?? ? 2 max 4 33 RS = b 71SB???k ió ?FB ???¥?bù81? ′ H??¥?? Rú H#?¥ú ?@ I 11" H ?¨¥ ? K 8$ h 3 ?k ¥8 2 1 3 VRH Rππ=+ 2 h¤? 2 1 3 V H h Rπ =?? ^k ¥ V ?1 22 2 22 2 3 VRh SRHRRh RRh 2 R π ππ π=+ +=?+ +b  RD p ê? ?¤? h 22 2 22 2 22 2 0 3 22 0 3 SRRh h Rh SVh R Rh RR Rh ππ ππ π ? ? =? + = ? ? +? ? ? ? =? ? + + + = ? ? + ? b ??B?Z? ¤? 5 2 R h=  | 5 2 R h= D 2 1 3 VRH Rππ=+ 2 h} ?? 150 =?Z?¤? 1 2 H h=  ?[? 21 5 hHR == H? K 8b 8 p?Z? ? ??¥?f ?122 22 =++ yxyx )(xyy = ¥′b 3 ? 0 2 ' = + + ?= yx yx y , ¤? , } ? ¤? ?N V??f ? 0=+ yx 122 22 =++ yxyx 1 2 =y )(xyy = ¥?1  O?1x=± 1x=± Hμ 1y = ? b ???μ 2 1' ( ) 1 '' (1 2 ') 2(2) yxy yy x yxy y ++ =? + + =? ++  ? ¥?| V? "( 1)y ± )(xyy = 1x=? |v′ 1 1x = |l′ b 1? ? '59 V? 222 22( )xxyyxyy++=++= 2 1 1  ¤? ?N V?1y?≤ ≤ )(xyy =  1x=? |v′ 1 |l′ b 1x = 1? 9 p?Z? ? ??¥?f ? ¥ ′b 08822 222 =+?+++ zyzzyx ),( yxzz = 3 ? 4 0 12 8 4( 2 ) 0 12 8 zx xzy zyz yzy ? ? == ? ??? ? ? ?+ ? == ? ??? ? , ¤? D , } ? ¤? 0=x 02 =+ zy 08822 222 =+?+++ zyzzyx 087 2 =?+ zz ' 8 1, 7 z =?b?N V??f ? (, )zzxy= ¥?1 D (0, 2)? 16 (0, ) 7 b 151 ? 2 2 4 12 8 z x zy ? = ???  2 0 z xy ? = ??  2 2 4 12 8 z yz ? = y? ??  V?? (0, 2)? D 16 (0, ) 7 μ b 0H >  ? yN (0, 2)? 1z = 2 2 4 0 15 z x ? = > ?  ?[ (0, 2)? 1l′? l′1  1z = 16 (0, ) 7 ? 8 7 z =? y N 2 2 4 0 15 z x ? =?< ?  ? [ 16 (0, ) 7 1 v′?v′1 8 7 z =? b ? 1 eZ? V[?1 22 22(2)(1)(78xyzzz++ =? +) ?PHdμ V¤ '(1)(78)0zz?+≥ 8 7 z ≤? ? b 1z ≥ ? 2  ?? bW?Z?¥m^ ^ ? = ? w ?? ??M ? ¥?sF?b ?-B 7 g_  Kl′ 1z =  6B? 7 g_/ K v′ 8 7 z =? b 10 Oxy ü ?  pB? P ?? ?°L 0=x  0=y ? ¥  ?¥ üZ?Klb 0162 =?+ yx 3 ü ? ? (, )x y ? ?°L¥  ? üZ?1 22 216 (, ) ( ) 5 xy Dxyxy 2 + ? =++ b  p ê? ? ,xy 2 2(216) 5 4 2 ( 2 16) 0, 5 x y Dxxy Dyxy ? =+ +?= ? ? ? ? =+ +?= ? ? 0,  ¤? 81 , 55 xy== 6  ?[f ?oμB?? 816 (, ) 55 b 152 ?? |( , )| lim ( , ) xy Dxy →∞ =+∞ V?f ? ?(, )Dxy 816 (, ) 55 μKl′b 11£ ü?¥ ?μ? M ????[? ???¥ ?1Klb £ !???1 1? M ???¥ ???1 α2 D β2 5 ???¥ ? 1 cot cot cot( ) cot cot tan( ) 2 S π α βαβαβα=++ ??=+++βb ? 22 22 csc sec ( ) 0, csc sec ( ) 0, S S ααβ α βαβ β ? ? =? + + = ? ?? ? ? ? =? + + = ?? ?  ¤? 2 π α βα==??β ?[ 6 π βα ==  '? M? ???¥ ?1Klb 12£ ü?¥ ?μ =¤ H??[? H?¥ ?1Kvb n n £ !???1 1? =¤ H?¥òH ?¥?? ?1n k α ),,2,1( nk null= 5 H?¥ ?1 n )]sin(sinsin[sin 2 1 121121 ?? +++?+++= nn S αααααα nullnull b ? 112 1 1 [cos cos( )] 0 2 n k S αααα α ? ? =?+++ ? null = )1,,2,1( ?= nk null  w 12 1 12 1 2( nn )α ααπααα ? ? === =?+++nullnull ?[ 153 2 k n π α =  (1,2,,kn)= null  ' =¤? H?¥ ?1Kvb n 13£ ü? +∞<<<< yx 0,10 H? ??? T 1 e)1( ? <? xyx y b £ 7 )1(),( xyxyxf y ?= y p ê? (1 )(1 ln ) 0 y f xxyx y ? =?+ = ?  3¤ x y ln 1? = b%?¥ ? )1,0(∈x f y ? ?  x y ln 1? = ?í¥?|M? V?  T1(, )fxy y ¥f ?¥v′?1 x y ln 1? = v′1 xe x x ln )1( )( ?? =? b )(x? p?¤? 2 1 '( ) (1 ln ) ln x xxx ex x ? =?+b : () 1 ln , (0,1)gx x x x x=?+ ∈  5   ?[ ? ^'( ) ln 0gx x=< (0 ) 1, (1 ) 0gg+= ?= () 0gx> )(x? ?ì?? 9Fb? 1 1 lim ( ) x x e? ? →? = ¤? 1 (, ) ()f xy x e? ? ≤< (0 1, 0 )xy< <<<+∞b 14 !2? ?! ?è ?J?èb!  £á Y?èb!  £ á  l H ?è¥ l sY1 x y xyx )3( βα ?? ? yyx )24( αβ ??  0>> βα b p Páè9 Kv¥b! ?b 3 è9á 1 22 (3 ) (4 2 ) 2 2 3 4Pxyxxyxxyyxαβ β α α β α=??+?? =???++yb 0, 0,  p ê? ? ,xy 223 244 x y Pxy Pxy αβ βα =? ? + =? ? ? =? ? + = ? ?  3¤ 154 22 2 23 βα βα ? ? =x  22 24 34 βα βα ? ? =y b y1 ^=Q[ T? 22 223Px xyyxαβα=? ? ? + +4y 0 222 ( 2 )( 4 ) (2 ) 4(2 ) 0H αα β αβ=? ? ? = ? > 2 xx P α=?< V?  Hesse ? ^μ?¥ ?[f ?μKv′'? 22 2 23 βα βα ? ? =x  22 24 34 βα βα ? ? =y Háè9 Kvb 155 12.6 9 ? L5  ? =¥·?/I???è09 ?  L=9 ?  1 ?  ,q¥Fy3ü ?y? V U ,q?B?y? ?C¥F? ? F?·  ?a éa ??  V U?=? y??C¥F? ?b  °?¤ 8? ,q¥ D ?/ x y x y x 0 1 3 6 8 5 4 2 y 1 2 2 4 4 3 3 2 ??t ? ¥ ??m s ? ì-W1"¥ü T  i? E? wLb baxy += 3 ??} ?1 hold off x=[0,1,3,6,8,5,4,2]; y=[1,2,2,4,4,3,3,2]; plot(x,y,'b*') hold on A=[x',ones(size(x'))]; B=y'; x1=A\B; a=x1(1);b=x1(2);y=a*x+b; plot(x,y,'r') string=[' E?°L y=',num2str(a),'*x+',num2str(b)]; text(0.5,3.5,str,'FontSize',16) ?a¤ E? wL bm?1 = 0.37845 +1.2531yx 2  ??v?¥?[c  D?aéc  ¥??2T ?/V ? U??} ?1 (%)x (%)y x 165175 185 19520521525235245 y 435426 418 406403387372360340 156 ??t ? ¥ ??ms ? ì-W1"¥ü Ti? E? wLb 3 ??} ?1 hold off x=[16.5,17.5,18.5,19.5,20.5,21.5,22.5,23.5,24.5]; y=[43.5,42.6,41.8,40.6,40.3,38.7,37.2,36.0,34.0]; plot(x,y,'b*') hold on A=[x',ones(size(x'))]; B=y'; x1=A\B; a=x1(1);b=x1(2);y=a*x+b; plot(x,y,'r') str=[' E?°L y= ',num2str(a),'*x+',num2str(b)]; text(18,44,str,'FontSize',16) ?a¤ E? wL = 1.1483 +62.9519yx? bm?1 3 ?á ?Fy -¥c £ q %DFyac £ q %¥? k2 T ?/V ? kI| i 1 2 3 4 5 6 7 8 9 10 Fy -¥ c £ q i x 16.7 18.2 18.0 17.9 17.4 16.6 17.2 17.7 15.7 17.1 Fya¥ c £ q i y 17.5 18.7 18.6 18.5 18.2 17.5 18.0 18.2 16.9 17.8 k ??Fya¥c £ q DFy -c £ q ¥1"b y x 3 ??} ?1 hold off x=[16.7,18.2,18.0,17.9,17.4,16.6,17.2,17.7,15.7,17.1]; y=[17.5,18.7,18.6,18.5,18.2,17.5,18.0,18.2,16.9,17.8]; plot(x,y,'b*') hold on 157 A=[x',ones(size(x'))]; B=y'; x1=A\B; a=x1(1);b=x1(2);y=a*x+b; plot(x,y,'r') str=[' E?°L y=',num2str(a),'*x+',num2str(b)]; text(15.6,18.5,str,'FontSize',16) ?a¤ E? wL bm?1 = 0.73979 +5.2286yx 4 9? £¥? P¨V???? ? £ 0? ¥? K ?  ??9vb 3áV?? ?  P¨Q ?D? ?9v- W¥[/ 16 F ? b??t ? ¥ ??ms P¨Q ? D ? ?9v -W¥1"i? E? wLb x y x 2 3 4 5 6 7 8 9 y 6.42 8.20 9.58 9.50 9.70 10.00 9.93 9.99 x 10 11 12 13 14 15 16 17 y 10.50 10.59 10.60 10.63 10.60 10.90 10.76 10.80  4 U  L ! b cbxaxy ++= 2 3 ??} ?1 hold off x=2:17; y=[6.42,8.20,9.58,9.50,9.70,10.00,9.93,9.99,10.50,10.59,10.60,10.63,10.6 0,10.90,10.76,10.80]; plot(x,y,'b*') A=[x.^2',x',ones(size(x))']; a=A\y' hold on y=a(1)*x.^2+a(2)*x+a(3) plot(x,y,'r') string=[' E?°L y=', 158 num2str(a(1)),'*x^2+',num2str(a(2)),'*x+',num2str(a(3))]; text(5,8,string) ?a¤ E? wL  m?1 2 0.025746 0.68829 6.2507yxx=? + + 5 ù??DQ? ? H ¤ ?/  ? b s L 7 Sa¥ HW t DQ?t¥  -W¥1"i? E? wLb m t 3 6 9 12 15 18 21 24 m 57.6 41.5 31.2 22.9 15.4 12.1 8.9 6.4  4 U  D ¥1"1 b m t bt am e= 3 ??} ?1 hold off x=3:3:24; y=[57.6,41.5,31.2,22.9,15.4,12.1,8.9,6.4]; plot(x,y,'b*') hold on y1=log(y); A=[x',ones(size(x))']; a=A\y1'; y=exp(a(2))*exp(a(1)*x) plot(x,y,'r') string=[' E?°L m=',num2str(exp(a(2))),'*e^{',num2str(a(1)),'*t}']; text(8,28,string ,'FontSize',16) ?a¤ E? wL  m?1 -0.10443t m=78.448e 159 160