5 íHq′
1 )
?/
f
?¥′
1 61222),(
2244
+??+= yxyxyxf
2
2244
2),( yxyxyxyxf ???+=
3
222
),,( zyxzyxf ?+=
4 ))((),(
42
xyxyyxf ??=
5
y
b
x
a
xyyxf
33
),( ++= ?è
? 0,0 >> ba
6
zy
z
x
y
xzyxf
2
),,( +++=
b 0,, >zyx
3 (1) 5p? b?
3
3
440
824
x
y
fxx
fy y
? =?=
?
?
=?=
?
?
0
3¤
0, 1; 0, 3xy=± =±
'f
?μ 9?? b?
2
4(3 1)
xx
fx= ? 0
xy
f =
2
24( 1)
yy
fy= ? V?
22
96(3 1)( 1)Hxy=?? b
?¨? ? 12.6.2 b ? )0,0( )3,1( )3,1( ? )3,1(? )3,1( ??
?
@
? [
^′? 7???
^′? b ? 0H >
xx
f ¥?|
V?f
? ?|v′ )0,0( 6 )3,1( )3,1( ? )3,1(? )3,1( ??
1
?|l′ b 13?
? '5 V
P¨¥ZE¤?
22 2 2
( , ) ( 1) 2( 3) 13fxy x y=?+ ??
?N^? )3,1( )3,1( ? )3,1(? )3,1( ??
1?1f
?¥Kl′?
Kl′1 f
? í K v ′ ?1f
?¥v′? v′1 b 13? )0,0( 6
25p? b?
145
3
3
422
422
x
y
fxxy
fyxy
? =??=
?
?
=??=
?
?
0
0
TMh V3¤ '?1 0, 1xy==± )0,0( )1,1( )1,1( ?? ?? b
?
2
12 2
xx
fx=? 2
xy
f =?
2
12 2
yy
fy= ? V?
22
4(6 1)(6 1) 4Hx y=??? b
?¨? ? 12.6.2 b ? )1,1( )1,1( ??
?@
? [
^′?
?
0H >
xx
f ¥?| V?f
? )1,1( )1,1( ??
?|l′ b 2?
?μ O)0,0( 0H = (0,0) 0f = b??
22
(,) 2 ( 2)fxx x x=?
4
(, ) 2f xx x?= V?f
? ??íM|
?[ ?
^′? b )0,0( )0,0(
35p? b?
20
20
20
x
y
z
fx
fy
fz
? = =
?
= =
?
?
=?=
?
3¤
^·B¥? b?(0,0,0) (0,0,0) 0f =
2
(, ,0)
2
f xy x y=+
2
(0,0, )f z=?z
0
)
V?f
? ??íM|' ( ?
^′?
?[f
?í′? b
(0,0,0) 0,0,0)
? ?=Q[
T
? ¥ Hesse ? H
^è
?
?á
ìμ?/2
?
()f x
n
∈Rx
! 1 ¥?5? V?
0
x ()f x
00
()()()(
T
ff H?=? ?x x xx xx
a 1Kl′¥ sA1Hq
^ H1??? ?
0
()f x
b 1Kv′¥ sA1Hq
^ H1?μ? ?
0
()f x
c ?
^′¥ sA1Hq
^ H1?? ? b
0
()f x
'5??f
? ¥ Hesse ?1?? ?
?[ ?
^
¥′? b
(, ,)fxyz (0,0,0)
(, ,)fxyz
146
45p? b?
42
24
2(3 2 ) 0
20
x
y
fxxyxy
fyxx
? =??
?
?
=??=
?
?
=
3¤ ;0xy== 1, 1x y=±=;
1
,
8
2
xy=± =
3
'?1 )0,0( (1,1) (1,1)?
)
8
3
,
2
2
( ? )
8
3
,
2
2
(? ?? b?
42
30 12 2
xx
fxyxy= ??
3
24
xy
f xx=? ?
V? 2
yy
f =
42
2(30 12 2 )Hxyxy
32
(2 4 )=??x x?+ b
?¨? ? 12.6.2 b? )
8
3
,
2
2
( )
8
3
,
2
2
(?
?@
?[
^′?
?
0H >
xx
f ¥?| V?f
? )
8
3
,
2
2
( )
8
3
,
2
2
(? |l′
1
64
? b
?
?[ (1(1,1) (1,1)? 0H < (1,1) ,1)? ?
^′? b
?)0,0( 0H = O (0,0) 0f = b? ?
35
(, ) (1 )
2
f xx x x=? ? ^?f
?
??íM|
?[ ?
^′? b )0,0( )0,0(
55p? b?
3
2
3
2
0
0
x
y
a
fy
x
b
fx
y
?
= ?=
?
?
?
?
= ?=
?
?
3¤
22
,
ab
ba
??
?
??
?
^·B¥? b?
3
3
2
xx
a
f
x
= 1
xy
f =
3
3
2
yy
b
f
y
= V?
33
33
4
1
ab
H
xy
= ? b
?¨? ? 12.6.2 b???
22
,
ab
ba
??
??
??
μ ? 0H >
xx
f ¥?|
147
V?f
? ),(
22
a
b
b
a
?|l′ 3 b ab
65p? b?
2
2
2
10
1
0
12
0
x
y
z
y
f
x
z
f
xy
f
yz
?
=? =
?
?
?
=? =
?
?
?
=? =
?
?
3¤·B¥?
113
424
2,2,2
??
?
??
?
b??f
?
113
424
2,2,2
?
?
??
?
?
?¥ Hesse ?
31
42
11
1
24
1
1
4
220
22 2
022
?
?
?
?
?
??
?
??
?
??
?
??
?
^??¥
?[f
? )2,2,2(
4
3
2
1
4
1
|l′
1
4
42? b
2
! £
üf
? ¥Kl′1 0 b xzxyzyxzyxf 2223),,(
222
+?++= f
£ 5p? b?
2220
620
42 0
x
y
z
fxyz
fyx
fzx
? =?+=
?
=?=
?
?
=+=
?
3¤·B? ??f
? ( ?¥ Hesse ?
^
??¥
?[f
? ?|l′
(0,0,0) 0,0,0)
222
260
204
?
??
??
?
??
(0,0,0) (0,0,0) 0f = b
? '5 V
P¨¥ZE¤?
22
11
(, ,) ( 2) ( 2)
22
2
1
f xyz x y x z y=?+++
?N V?f
? ?|Kl′(0,0,0) (0,0,0) 0f = b
3. £
üf
? μík?v′? ?íl′
? b
yy
yxyxf ecos)e1(),( ?+=
£ ?
(, ) (1 e)sin 0
(, ) ecos (1 )e 0
y
x
yy
y
fxy x
fxy x y
? =? + =
?
?
= ?+ =
?
?
148
3¤ xkπ= , cos 1ykπ=?
?[?1
(,cos 1)kkπ π ? 0, 1, 2,k = ±±null b
? (1 ) cos
y
xx
fex=? + sin
y
xy
f ex=? ecos (2 )e
yy
yy
f xy=?+ V?
? (,cos 1)kkπ π ? )
cos (1 )
yy
Hkeπ=+e
?[? k 1
?
H 0H < (,cos 1)kkπ π ? ?
^′? ? k 1}
?
H
?0H > 0
xx
f < V? (,cos 1kk)π π ?
^v′? b
?[f
?μík
?v′??íl′? b
4pf
? )sin(sinsin),( yxyxyxf +?+= >u×
}2,0,0|),{( π≤+≥≥= yxyxyxD
¥Kv′DKl′ b
3 ?
cos cos( ) 0
cos cos( ) 0
x
y
fxxy
fyxy
=?+=?
?
?
=?+=
?
?
¤? cos cos cos( )x yx==+y b { }(, )|0 , 2xy xy x y π=<<+<D
null
I
n
¤? 2x yxyπ== ??'
22
,
33
π π
?
?
??
?
?
^f
?u×=?·B¥? b?
?u×H?
'? 0x= 0y = 2xy π+ =
H μ 7
u×=?·B¥?
|′1
(, ) 0fxy=
22 33
(,)
33 2
f ππ 0= > ? >u×
??
f
?¥?é V?f
?¥Kv′1
2
33
max
=f Kl′1 b 0
min
=f
5
¨8"¥°L]1,0[ bax+=ξ ?}9wL ??
P
?ü
Zμ¥s
2
xy =
∫
?=
1
0
2
)(),( dxybaJ ξ
1lil/¥KDí
? b
3
1
22
0
(,) ( )Jab x ax b dx=??
∫
22
11
(2)
523
a
ababb= ?+ ? + +
^ ¥=Q[
T
?¥ Hesse ?,ab
2
1
3
12
??
?
?
??
??
?
?
^??¥
?[μK l
′
n? 15
3¥? b?
? p? ,ab
149
21
0
32
2
20
3
a
b
Jab
Jab
?
= ?+=
?
?
?
?
= +?=
?
?
¤?
1
1,
6
ab==?'
1
1,
6
?
?
?
??
?
?
^·B¥?
?[A?
^Kl′? by
NKD°L1
6
1
?= xξ b
6??1 R¥?
p=¤???¥
?Kv? b
3
!?=¤???¥òH
?¥???1
123
,,α αα5???¥
?
1
22
123 12 1
[sin sin sin ] [sin sin sin( )]
RR
S
2
α αα αααα=++=+?+
?? 4 5?
12
2
3
3
π
α αα= ==
H
?Kv?
H?=¤???1???
?
2
max
4
33
RS = b
71SB???kió
?FB ???¥? bù81?
′
H??¥?? Rú H#?¥ú
?@
I
11"
H
?¨¥
?
K
8$
h
3 ?k¥8
2
1
3
VRH Rππ=+
2
h¤?
2
1
3
V
H h
Rπ
=??
^k¥
V
?1
22 2
22
2
3
VRh
SRHRRh RRh
2
R
π
ππ π=+ +=?+ + b
RD pê?
?¤? h
22
2
22
2
22
2
0
3
22
0
3
SRRh
h
Rh
SVh R
Rh
RR
Rh
ππ
ππ
π
?
?
=? + =
?
?
+?
?
?
?
=? ? + + + =
?
?
+
?
b
??B?Z? ¤?
5
2
R h= |
5
2
R h= D
2
1
3
VRH Rππ=+
2
h}??
150
=?Z?¤?
1
2
H h=
?[?
21
5
hHR
==
H?
K
8 b
8p?Z?
???¥?f
?122
22
=++ yxyx )(xyy = ¥′ b
3 ?
0
2
' =
+
+
?=
yx
yx
y ,
¤? , }? ¤? ?N V??f
? 0=+ yx 122
22
=++ yxyx 1
2
=y
)(xyy = ¥?1 O?1x=± 1x=±
Hμ 1y = ? b
???μ
2
1' ( ) 1
'' (1 2 ')
2(2)
yxy
yy
x yxy y
++
=? + + =?
++
? ¥?| V? "( 1)y ± )(xyy = 1x=? |v′ 1 1x = |l′ b 1?
? '59 V?
222
22( )xxyyxyy++=++=
2
1
1
¤? ?N V?1y?≤ ≤ )(xyy = 1x=? |v′ 1 |l′
b
1x =
1?
9p?Z?
???¥?f
? ¥
′ b
08822
222
=+?+++ zyzzyx ),( yxzz =
3 ?
4
0
12 8
4( 2 )
0
12 8
zx
xzy
zyz
yzy
?
?
==
?
???
?
?
?+
?
==
?
???
?
,
¤? D , }? ¤? 0=x 02 =+ zy 08822
222
=+?+++ zyzzyx
087
2
=?+ zz '
8
1,
7
z =? b?N V??f
? (, )zzxy= ¥?1 D (0, 2)?
16
(0, )
7
b
151
?
2
2
4
12 8
z
x zy
?
=
???
2
0
z
xy
?
=
??
2
2
4
12 8
z
yz
?
=
y? ??
V?? (0, 2)? D
16
(0, )
7
μ b 0H >
? yN (0, 2)? 1z =
2
2
4
0
15
z
x
?
= >
?
?[ (0, 2)? 1l′?
l′1 1z =
16
(0, )
7
?
8
7
z =? y N
2
2
4
0
15
z
x
?
=?<
?
? [
16
(0, )
7
1
v′?v′1
8
7
z =? b
? 1 eZ? V[?1
22
22(2)(1)(78xyzzz++ =? +)
?PHdμ V¤ '(1)(78)0zz?+≥
8
7
z ≤? ? b 1z ≥
? 2 ?? bW?Z?¥m^
^
? =
?w
??
??M ?
¥?sF? b ?-B 7 g_
Kl′ 1z =
6B? 7 g_/ K
v′
8
7
z =? b
10 Oxyü
?
pB?
P
???°L 0=x 0=y ?
¥ ?¥üZ?Kl b
0162 =?+ yx
3 ü
?
? (, )x y ??°L¥ ?üZ?1
22
216
(, ) ( )
5
xy
Dxyxy
2
+ ?
=++ b
pê?
? ,xy
2
2(216)
5
4
2 ( 2 16) 0,
5
x
y
Dxxy
Dyxy
?
=+ +?=
?
?
?
?
=+ +?=
?
?
0,
¤?
81
,
55
xy==
6
?[f
?oμB??
816
(, )
55
b
152
??
|( , )|
lim ( , )
xy
Dxy
→∞
=+∞
V?f
? ?(, )Dxy
816
(, )
55
μKl′ b
11£
ü?¥
?μ?M????[????¥
?1Kl b
£
!???1 1?M???¥
???1 α2 D β2 5 ???¥
?
1
cot cot cot( ) cot cot tan( )
2
S
π
α βαβαβα=++ ??=+++β b
?
22
22
csc sec ( ) 0,
csc sec ( ) 0,
S
S
ααβ
α
βαβ
β
?
?
=? + + =
?
??
?
?
?
=? + + =
??
?
¤?
2
π
α βα==??β
?[
6
π
βα ==
'?M????¥
?1Kl b
12£
ü?¥
?μ=¤ H??[? H?¥
?1Kv b n n
£
!???1 1?=¤ H?¥òH
?¥?? ?1n
k
α ),,2,1( nk null= 5 H?¥
?1 n
)]sin(sinsin[sin
2
1
121121 ??
+++?+++=
nn
S αααααα nullnull b
?
112 1
1
[cos cos( )] 0
2
n
k
S
αααα
α
?
?
=?+++
?
null = )1,,2,1( ?= nk null
w
12 1 12 1
2(
nn
)α ααπααα
? ?
=== =?+++nullnull
?[
153
2
k
n
π
α = (1,2,,kn)= null
'=¤? H?¥
?1Kv b n
13£
ü? +∞<<<< yx 0,10
H? ???
T
1
e)1(
?
<? xyx
y
b
£
7 )1(),( xyxyxf
y
?= ypê?
(1 )(1 ln ) 0
y
f
xxyx
y
?
=?+ =
?
3¤
x
y
ln
1?
= b%?¥ ? )1,0(∈x
f
y
?
?
x
y
ln
1?
= ?�|M?
V?
T1(, )fxy y ¥f
?¥v′?1
x
y
ln
1?
= v′1
xe
x
x
ln
)1(
)(
??
=? b )(x? p?¤?
2
1
'( ) (1 ln )
ln
x xxx
ex x
? =?+ b
:
() 1 ln , (0,1)gx x x x x=?+ ∈
5
?[ ?
^'( ) ln 0gx x=< (0 ) 1, (1 ) 0gg+= ?= () 0gx> )(x? ?ì??
9F b?
1
1
lim ( )
x
x e?
?
→?
= ¤?
1
(, ) ()f xy x e?
?
≤< (0 1, 0 )xy< <<<+∞ b
14!2?
?!
?è ?J?èb!
£á Y?èb!
£
á
l
H
?è¥
l
sY1
x y
xyx )3( βα ?? ? yyx )24( αβ ??
0>> βα b
p
Páè9
Kv¥b!
? b
3 è9á
1
22
(3 ) (4 2 ) 2 2 3 4Pxyxxyxxyyxαβ β α α β α=??+?? =???++y b
0,
0,
pê?
?
,xy
223
244
x
y
Pxy
Pxy
αβ
βα
=? ? + =?
?
?
=? ? + =
?
?
3¤
154
22
2
23
βα
βα
?
?
=x
22
24
34
βα
βα
?
?
=y b
y1
^=Q[
T?
22
223Px xyyxαβα=? ? ? + +4y
0
222
( 2 )( 4 ) (2 ) 4(2 ) 0H αα β αβ=? ? ? = ? > 2
xx
P α=?<
V? Hesse ?
^μ?¥
?[f
?μKv′'?
22
2
23
βα
βα
?
?
=x
22
24
34
βα
βα
?
?
=y
Háè9
Kv b
155
12.6 9
?
L5
?
=¥·?/I???è09
?
L=9
?
1 ?
,q¥Fy3ü
?y? V
U
,q?B?y?
?C¥F?
?
F?·? aé a
?? V
U?=?
y??C¥F?
? b°?¤ 8?
,q¥ D ?/
x
y
x y
x 0 1 3 6 8 5 4 2
y
1 2 2 4 4 3 3 2
??t
? ¥??m s
?
ì-W1"¥ü
T
i?E?wL b
baxy +=
3 ??}
?1
hold off
x=[0,1,3,6,8,5,4,2];
y=[1,2,2,4,4,3,3,2];
plot(x,y,'b*')
hold on
A=[x',ones(size(x'))];
B=y';
x1=A\B;
a=x1(1);b=x1(2);y=a*x+b;
plot(x,y,'r')
string=['E?°L y=',num2str(a),'*x+',num2str(b)];
text(0.5,3.5,str,'FontSize',16)
?a¤E?wL bm?1 = 0.37845 +1.2531yx
2??v?¥?[c
D?aéc
¥??2T?/V
?
U??}
?1
(%)x (%)y
x
165175 185 19520521525235245
y 435426 418 406403387372360340
156
??t
? ¥??ms
?
ì-W1"¥ü
Ti?
E?wL b
3 ??}
?1
hold off
x=[16.5,17.5,18.5,19.5,20.5,21.5,22.5,23.5,24.5];
y=[43.5,42.6,41.8,40.6,40.3,38.7,37.2,36.0,34.0];
plot(x,y,'b*')
hold on
A=[x',ones(size(x'))];
B=y';
x1=A\B;
a=x1(1);b=x1(2);y=a*x+b;
plot(x,y,'r')
str=['E?°L y= ',num2str(a),'*x+',num2str(b)];
text(18,44,str,'FontSize',16)
?a¤E?wL = 1.1483 +62.9519yx? bm?1
3?á?Fy-¥c
£
q
%DFyac
£
q
%¥?
k2
T?/V
?
kI| i 1 2 3 4 5 6 7 8 9 10
Fy-¥
c
£
q
i
x
16.7 18.2 18.0 17.9 17.4 16.6 17.2 17.7 15.7 17.1
Fya¥
c
£
q
i
y
17.5 18.7 18.6 18.5 18.2 17.5 18.0 18.2 16.9 17.8
k??Fya¥c
£
q DFy-c
£
q ¥1"