5 ±s?
T
1. 9
?/
?
1 )6()7(
2
dzxdyydxdyzxdx +?∧+
2 )sin(sin)cos(cos xdyydxxdyydx ?∧+
3 )()276( dzdydxdzdxdydx ++∧∧+∧ b
3
1 )6()7(
2
dzxdyydxdyzxdx +?∧+
= dydxyzx ∧+? )7(
22
dxxdzdzdyz ∧?∧+ 642
2
b
2 )sin(sin)cos(cos xdyydxxdyydx ?∧+
= dydxyx ∧+? )sin( b
3 )()276( dzdydxdzdxdydx ++∧∧+∧
= dzdydx ∧∧? 21 b
2.
!
b
43243213312211
4323312110
dddddddddd
,dddddd
xxxbxxxbxxbxxb
xxxaxxaxaa
∧∧+∧∧+∧+∧=
∧∧+∧++=
η
ω
p ω η+ ? ω η∧ b
3
3122211110
)( dxdxbadxdxbdxaa ∧++∧++=+ηω
3213
dxdxdxb ∧∧+
43243
)( dxdxdxba ∧∧++
2110
dxdxba ∧=∧ηω
321303120
dxdxdxbadxdxba ∧∧+∧+
43240
dxdxdxba ∧∧+
432141
dxdxdxdxba ∧∧∧+ b
3. p
23
2
1312
2
2
2
3
13
2
231
2
2323211
ddddd)(
dddd)1(dddd
xxxxxxxx
xxxxxxxxxxxx
∧?∧∧++
∧+∧++∧+∧=ω
¥S?
T b
3
=ω
31211
dxdxdxdxx ∧+∧
323
2
1
)( dxdxxx ∧++
321
2
3
2
2
)( dxdxdxxx ∧∧+? b
4. £
ü?
?@s¥
p?2?
p b
£ ??¥L??é o3 σηω ,, sY
^ ?p ?
T a ?
T??q ?r ?
T¥f?£
ü' V b
!
K
K
KJ
J
JI
I
I
dxxhdxxgdxxf )(,)(,)(
∑∑∑
=== σηω 5
=∧+ σηω )(
K
K
KJ
J
JI
I
I
dxxhdxxgdxxf )()()(
∑∑∑
∧
?
?
?
?
?
?
?
?
+
∑∑
∧+∧=
KJ
KJKJ
KI
KIKI
dxdxxhxgdxdxxhxf
,,
)()()()(
= σησω ∧+∧ b
1
=+∧ )( ηωσ
?
?
?
?
?
?
?
?
+∧
∑∑∑ J
J
JI
I
IK
K
K
dxxgdxxfdxxh )()()(
∑∑
∧+∧=
JK
JKJK
IK
IKIK
dxdxxgxhdxdxxfxh
,,
)()()()(
= ησωσ ∧+∧ b
∑∑
∧
?
?
?
?
?
?
?
?
∧=∧∧
K
KK
JI
JIJI
dxxhdxdxxgxf )()()()(
,
σηω
K
KJI
JIKJI
dxdxdxxhxgxf ∧∧=
∑
,,
)()()(
?
?
?
?
?
?
?
?
∧∧
?
?
?
?
?
?
?
?
=
∑∑ K
KJ
JKJ
I
II
dxdxxhxgdxxf
,
)()()(
)( σηω ∧∧= b
5. ±s?
T /
MD/¥Vr
T zyx ddd ∧∧
1?
?USMD
xr yr zz= = =cos , sin ,θ θ
2o
?USMD
xr yr zr= = =sin cos , sin sin , cos? θ ? θ ? b
3
1?
dzdzdrdrdydrdrdx =+=?= ,cossin,sincos θθθθθθ
¤?
=∧∧ dzdydx dzdrdr ∧∧ θ b
2?
θθ??θ?θ? drdrdrdx sinsincoscoscossin ?+=
θθ??θ?θ? drdrdrdy cossinsincossinsin ++=
??? drdrdz sincos ?=
¤?
b =∧∧ dzdydx θ?? dddrr ∧∧sin
2
6.
!
1
∑
=
=
n
i
i
j
ij
xa
1
dω nj ,,2,1 "=
n
R
¥ 1-?
T£
ü
n
j
in
xxxa ddd)det(
2121
∧∧∧=∧∧∧ "