定量法习题解答
第一章:
2.(1) P{恰有一件次品}==0.0855
(2) P{全是正品}==0.9122
(3) P{至少2件正品}= P{2件正品}+ P{3件正品}
= P{1件次品}+ P{全是正品}=0.0855+0.9122=0.9978
4.设A={寿命(50}, B={寿命(70},由题意,
P(A)=1-0.1=0.9,P(B)=1-0.75=0.25,求P(B|A)。
(B(A,∴P(AB)=P(B)
P(B|A)=P(AB) / P(A)=P(B) / P(A) =0.25 / 0.9=0.278
5.记A={甲导弹命中},B={乙导弹命中},则A、B独立,
P{A∪B}=P(A)+P(B)-P(AB)
= P(A)+P(B)-P(A)P(B)
=0.6+0.7-0.6×0.7=0.88
或:P{A∪B}=1-
=1-(1-0.6)(1-0.7)==0.88
6.设A1={抽到用甲厂原料生产的产品},A2={抽到用乙厂原料生产的产品},
A3={抽到用丙厂原料生产的产品},B={抽到次品},则
P(A1)=0.6,P(A2)=0.3,P(A3)=0.1
P(B|A1)=0.02,P(B|A2)=0.03,P(B|A3)=0.05
(1) P(A3B)=P(A3)P(B|A3)=0.1×0.05=0.005
(2) P(B)=P(A1)P(B|A1)+ P(A2)P(B|A2)+ P(A3)P(B|A3)
=0.6×0.02+0.3×0.03+0.1×0.05=0.026
(3) P(A1|B)=P(A1)P(B|A1) / P(B)=0.6×0.02 / 0.026=0.4615
7.设至少应配备n门高炮,并设X为击中敌机的高炮数,则X~B(n, 0.02),由题意,使
P(X≥1)=1-P(X=0)=1-
得 0.98n≤0.7,n lg0.98≤lg0.7,
故至少应配备18门高炮。
8.设X={一合中的次品数},则X~B(n,p),n=100,p=0.01,q=0.99
(1) P{X=0}=×0.010×0.99100=0.366
(2) P{X>2}=1-P{X=0}-P{X=1}-P{X=2}
=1-0.366-×0.01×0.9999-×0.012×0.9998=0.0794
(3) 设每合至少装n个钻头,则λ=np=0.01×n≈1
由题意,每合废品数X≤n-100
P{X≤n-100}=1-P{X>n-100}=1-P{X≥n-99}
=1-
即:,查泊松分布表(λ=1),得
(n-99)min=4,即:n-99=4, n=103,即每合至少装103个。
P{X≤3}=P{X=0}+P{X=1}+P{X=2}+P{X=3}
=×0.010×0.99103+×0.011×0.99102
+×0.012×0.99101+×0.013×0.99100
=0.9798
10.(1)X~N(μ,0.012),
P{μ-0.02<X<μ+0.02}=-
=φ(2)-φ(-2)=2φ(2)-1=0.9544
(2) X~N(μ,0.0072),
P{μ-0.02<X<μ+0.02}=-
=2φ(2.857)-1=2×0.9979-1=0.9958
故σ反映了机床的加工精度。
11.(1)P{X>1500}=1-=1-φ(1)=1-0.8413=0.1587
(2) 800+700=1500,
∵{X≥1500}({X≥800},∴P{X≥1500,X≥800}=P{X≥1500}
由题意,即要求 P{X≥1500|X≥800},由条件概率的计算公式,
P{X≥1500|X≥800}=
其中:P{X≥800}=1-=1-φ(-0.4)=φ(0.4)=0.6554
故P{X≥1500|X≥800}=0.1587/0.6554=0.2421
(3)解法一:设X1、X2、X3分别为3个元件的寿命,则X1、X2、X3相互独立,
P{至少有一个损坏}=1-P{全不损坏}
=1-P{X1≥1000,X2≥1000,X3≥1000}
=1-P{X1≥1000}P{X2≥1000}P{X3≥1000}
=1-(P{X≥1000})3=1-(1-φ(0))3=1-0.53=0.875
解法二:设Y为1000小时内损坏的元件数,由于各元件独立工作,故Y服从二项分布,n=3,p=P{X<1000}=φ(0)=0.5,
P{Y≥1}=1-P{Y=0}=1-C30×0.50×0.53=0.875
12.E(Y)==0
D(Y)==1