MIT
ICAT
Technology Considerations for Advanced
Formation Flight Systems
Prof. R. John Hansman
MIT International Center for Air Transportation
MIT
ICAT
How Can Technologies Impact
System Concept
y Need (Technology Pull)
? Technologies can fulfill need or requirement
? Technologies can overcome barriers (limitations, constraints, etc.)
y Opportunity (Technology Push)
? Technologies can Create Opportunities
? New Capabilities
? Competitive advantage
? Cost
? Performance
? Maintenance
? Other
MIT
ICAT
Formation System Concept is Itself
a Technology
y Needs
? Efficient Transport
? Fuel
? Cost
DCrew, Maintenance…
? Operational Access (Noise, Runways)
? Flexibility
? Others
y Opportunity
? Different design space if use multiple vehicles
? Overcome constraints (eg runway width, single departure point)
? Performance
? Fuel efficiency, crew
? Development of key technologies enable formation flight
? Flexibility
? Runway Throughput
MIT
ICAT
What are the Key Technologies for
Formation Flight
y Start with Fundamental Abstraction of System or Concept
(many ways)
? Functional
? Operational
? Concept of Operations
? Physical
? Component
? Constraint
? Information
y Based on Abstract view, identify
? Technology needs
? Key questions
? Potential opportunities
y Useful to sketch elements to visualize system
? Multiple views
MIT
ICAT
What are the Key Technologies for
Formation Flight
MIT
ICAT
What are the Key Technologies for
Formation Flight
y Overall Concept Questions
? Concept of Operations?
? How does form up occur
? Station keeping requirements
? Failure Modes
? Existing elements or New
? Vehicles
? Control Systems
? CNS
? Other
y Concept Scale
Opportunities/Costs
? Performance gains estimate
? Fuel
? Capacity
? Costs
? Development
? Deployment
y Concept Technologies Reqs
? Formation design
? Station Keeping
? Com
? Nav
? Surveillance
? Control
MIT
ICAT
What are the Key Technologies for
Formation Flight
y Communications
y Navigation
y Surveillance
y Control (Station Keeping)
? Intent States
? String Stability
y Vehicle Configuration
? Aero/Performance
? Control
y Propulsion
y Degree of Autonomy
y Flight Criticality
? Hardware
? Software
y Low Observability
y Others?
MIT
ICAT
Communications
y Requirements
? Communicate necessary information between formation elements and
command node (LAN and Air-Ground)
? Bandwidth
? Low-Observable?
? Synchronous vs asynchronous
y Constraints
? Spectrum
? Antenna Location
y Technologies
? Radio
? UHF, VHF, MMW
? Optical
? Laser
? Protocols
MIT
ICAT
COMMUNICATION
y Voice
? VHF (line of sight)
? 118.0-135.0 Mhz
? .025 spacing in US, 0.083 spacing in Europe)
? UHF
? 230-400 Mhz (guess)
? HF (over the horizon)
? Optical (secure)
y Datalink
? ACARS (VHF) - VDL Mode 2
? VDL Modes 3 and 4 (split voice and data)
? HF Datalink (China and Selcal)
y Geosynchronous (Inmarsatt)
? Antenna Requirements
y LEO and MEO Networks
y Software Radios
y Antenna Requirements
MIT
ICAT
Generic Avionic System
Software
Hardware
Antenna
Sensor
Databus
Flight Data Recorder
Black Box
Input Device
Display
MFD
Interface Unit
DatalinkAntenna
Power
Cooling
MIT
ICAT
Navigation
(relates to Surveillance)
y Requirements
? General Navigation (medium precision)
? Station Keeping (high precision)
? Integrity
? Availability
y Constraints
? Existing nav systems
? Loss of signal
y Technologies
? GPS/Galileo (need Differential)
? Code vs Carrier Phase Approaches
? IRS/GPS
? Sensor Based Approaches for Station Keeping
? Image (Visible, IR)
? Range Finders (Laser, Ultrasonic)
MIT
ICAT
GPS
From http://www.colorado.Edu/geography/gcraft/notes/gps/gps_f.html
(Courtesy of Peter Dana. Used with permission.)
MIT
ICAT
Inertial Reference Unit
y Integrate acceleration from known position and velocity
? Velocity
? Position
y Need Heading
? Gyros
? Mechanical
? Laser
y Can get Attitude
? Artificial Horizon (PFD. HUD)
y Drift Errors
? IRU unusable in vertical direction (need baro alt)
? Inflight Correction
? DME
? GPS
? Star Sighting for Space Vehicles
y Measurement Give Attitude Also
y 777 Analytical Redundancy
MIT
ICAT
Surveillance
y Requirements
? Observed states of lead elements sufficient to form-up and maintain
station keeping either manually or by automatic control
? Feed forward states (intent)
y Constraints
? Sight Angles
? Installation (weight, cost, power, etc)
? Cooperative Targets
y Technologies
? Automatic Dependant Surveillance Broadcast (ADS-B)
? Image Based Systems (Vis, IR)
? Radar (X Band, MMW0
? Range Finders (Laser)
? Sensor Fusion Systems
MIT
ICAT
ADS-B
Bob Hilb
UPS/Cargo Airline Association
(Image removed due to copyright considerations.)
MIT
ICAT
RADAR
y Wavelength λ
? S Band (10 cm)
? X Band (3 cm)
? Ku Band (1 (cm)
? Millimeter Wave (94 Ghz pass band)
y Radar Range Equation
y Beamwidth Θ
? Θ = λ/D
? D = Diameter of Circular Antenna
? Pencil beam vs Fan Beam
y Mechanically Steered Antennas
? Scan and Tilt
MIT
ICAT
INTENT REPRESENTATION
IN ATC
y Intent formalized in “Surveillance State Vector”
y Accurately mimics intent communication & execution in ATC
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
D(t) states, nDestinatio
T(t) states, trajectory Planned
C(t) states, target Current
A(t) states, onAccelerati
V(t) states,Velocity
P(t) states, Position
Traditional dynamic
states
Defined intent
states
Surveillance State
Vector, X(t)
=
FMS
Current
target state, C(t)
Destination, D(t)
Planned
trajectory, T(t)
MCP
PILOT
MIT
ICAT
RADAR SURVEILLANCE
ENVIRONMENT
y Allows visualization of different (actual or hypothetical)
surveillance environments
? Useful for conformance monitoring analyses of impact of surveillance
A/C
INTENT
CONTROL
SYSTEM
AIRCRAFT
DYNAMICS
Position, P(t)
Velocity, V(t)
Accel., A(t)
PILOT
INTENT
Target
states,
Guidance
mode
Nav.
accuracy
e.g. ANP
Control
surface
inputs
A/c
property
e.g. weight
Trajectory,
Destination
Position
Mode C altitude
RADAR SURVEILLANCE SYSTEM
ACTUAL SYSTEM REPRESENTATION
MIT
ICAT
ADS-B SURVEILLANCE
ENVIRONMENT
y Potential access to more states (e.g. dynamic and intent)
y Need to assess benefits for conformance monitoring
A/C
INTENT
CONTROL
SYSTEM
AIRCRAFT
DYNAMICS
Position, P(t)
Velocity, V(t)
Accel., A(t)
PILOT
INTENT
Target
states,
Guidance
mode
Nav.
accuracy
e.g. ANP
Control
surface
inputs
A/c
property
e.g. weight
Trajectory,
Destination
Position,
Baro altitude
Heading, Speeds
Roll, ...
Target
states
ACTUAL SYSTEM REPRESENTATION
Trajectory
ADS-B SURVEILLANCE SYSTEM
Other useful
states???
MIT
ICAT
Control
y Requirements
? Maintain Station Keeping sufficient to achieve formation benefits
? Tolerance to Environmental Disturbances
? String stability
y Constraints
? Certification
? Failure modes
? Available states
y Technologies
? Performance seeking control
? Multi-Agent Control Architectures
? Distributed Control Approaches
? Leader-Follower Schemes
? Fault Tolerant Systems
? Redundancy Architectures
MIT
ICAT
Automation
y Requirements
? Form up and station keeping may need to be automated
y Constraints
? Reliability, integrity
? Certification
? Failure Modes
y Technologies
? Flight Directors
? Autopilots
? Intercept systems
MIT
ICAT
Software
y Requirements
? High Integrity Implementation for Formation
? Formation requirement exceeds specs for current vehicles (eg 777)
y Constraints
? Failure Modes
y Technologies
? DO 178B
? ??
MIT
ICAT
Aero-Configuration
y Requirements
? Mission based requirements (you will define)
? Formation based requirements
? Special Control Requirements
y Constraints
? Stability and Control (CG)
? Formation and non-Formation operation
y Technologies
? Conventional approaches modified by formation considerations
? Asymmetric
? Formation optimal vs single optimal
DLead - High WL, Low AR >> high vortex
DTrail - Low WS, High AR >> Low drag
? Vortex Tailoring
? Unique configurations or control systems
MIT
ICAT
Configuration
y Symmetric vs Asymmetric
y Variable
? Formation vs Free Configurations
y Formation Specific Considerations
? What is the optimal aspect ratio for overall performance
y Are there special, non-classical control needs?
y What are takeoff and landing considerations
y In-flight physical hookups
MIT
ICAT
Propulsion
y Requirements
? Take-off, balanced field length >> drives thrust
? Cruise efficiency
? Response time
y Constraints
? Operational in formation and non formation configuration
y Technologies
? Unmatched multi engines (shut down in cruise, eg Voyager)
? Broad operating envelope engines (SFC hit)
? Tow Schemes
MIT
ICAT
Propulsion
Voyager
MIT
ICAT
Formation Transport Example:
C-47 (DC-3) towing CG-4 Cargo Gliders
http://www.atterburybakalarairmuseum.org/CG4A_C47_color_photo.jpg
Courtesy of the Atterbury-Bakalar Air Museum. Used with permission.
MIT
ICAT
What are the risk considerations
for technology incorporation
y Readiness
? NASA Technology Readiness Levels (TRL)
y Vulnerability
? High (Key Element on Which Concept Based)
? Medium (Performance or Capability Enhancing, Competitive Factor)
? Low (alternatives available)
y Competitive Risk
? Goes both ways
y Certification Risk
y Operational Considerations
? Issues are discovered in field operations
? Tracking Programs
? Unanticipated uses of technology
MIT
ICAT
What are the risk considerations
for technology incorporation
y Readiness
? NASA Technology Readiness Levels (TRL)
y Vulnerability
? High (Key Element on Which Concept Based)
? Medium (Performance or Capability Enhancing, Competitive Factor)
? Low (alternatives available)
y Competitive Risk
? Goes both ways
y Certification Risk
y Operational Considerations
? Issues are discovered in field operations
? Tracking Programs
? Unanticipated uses of technology